Han P, Guo J, Bao Q, Qin T, Ren G, Liu Y. Optical design and stray light control for a space-based laser space debris removal mission.
APPLIED OPTICS 2021;
60:7721-7730. [PMID:
34613242 DOI:
10.1364/ao.432386]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
In low-Earth orbit, the already existing population of small and medium debris (between 1 cm and several dozens of cm) is a concrete threat to operational satellites. A space-based laser space debris removal (SLDR) system that can remove hazardous debris around selected space assets appears to be a flexible and effective project. To achieve high-precision tracking and emitting, the optical system of the SLDR mission includes a target-detection telescope and emitting telescope, adopting a common light path structure. The optical design results, system performance, tolerance budget, and detailed stray light control design are presented in this paper. The large-aperture off-axis two-mirror beam-narrowing system characteristics are also discussed in terms of stray light control. This paper will present the lateral-displacement (LD) setting, two-stage fore baffle design, black baffle surface selection, and opening direction of the telescope door. The results showed that the stray light elimination reaches a 10-9 order, meeting design requirements.
Collapse