Essalih T, Khalighi MA, Hranilovic S, Akhouayri H. Optical OFDM for SiPM-Based Underwater Optical Wireless Communication Links.
SENSORS 2020;
20:s20216057. [PMID:
33114360 PMCID:
PMC7662332 DOI:
10.3390/s20216057]
[Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 11/20/2022]
Abstract
Underwater optical wireless systems have dual requirements of high data rates and long ranges in harsh scattering and attenuation conditions. In this paper, we investigate the advantages and limitations of optical orthogonal frequency-division multiplexing (O-OFDM) signaling when a silicon photo-multiplier (SiPM) is used at the receiver in order to ensure high sensitivity. Considering a light-emitting diode (LED) transmitter and taking into account the limited dynamic range imposed by the transmitter and the SiPM receiver, we study the performance of three popular O-OFDM schemes, i.e., DC-biased, asymmetrically-clipped, and layered asymmetrically-clipped O-OFDM (DCO-, ACO-, and LACO-OFDM, respectively). We consider a constraint on transmit electrical power PTxe and take into account the required DC bias for the three considered schemes in practice, showing the undeniable advantage of ACO- and LACO-OFDM in terms of energy efficiency. For instance, for the considered SiPM and LED components, a spectral efficiency of ∼1 bps/Hz with a data rate of 20 Mbps, a link range of 70 m, and a target bit-error-rate (BER) of 10−3, ACO and LACO allow a reduction of about 10 and 6 mW, respectively, in the required PTxe, compared to DCO-OFDM. Meanwhile, we show that when relaxing the PTxe constraint, DCO-OFDM offers the largest operational link range within which a target BER can be achieved. For instance, for a target BER of 10−3 and a data rate of 20 Mbps, and considering PTxe of 185, 80, and 50 mW for DCO-, LACO-, and ACO-OFDM, respectively, the corresponding intervals of operational link range are about 81, 74.3, and 73.8 m. Lastly, we show that LACO-OFDM makes a good compromise between energy efficiency and operational range flexibility, although requiring a higher computational complexity and imposing a longer latency at the receiver.
Collapse