1
|
Li L, Shi S, Escuti MJ. Improved saturation and wide-viewing angle color filters based on multi-twist retarders. OPTICS EXPRESS 2021; 29:4124-4138. [PMID: 33770998 DOI: 10.1364/oe.416961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Birefringent color filters serve a critical role in next-generation display systems, including augmented-/virtual-/mixed-reality headsets, and many types of optical remote sensing. Most prior polarization interference filters (PIFs) employ many individually aligned plates that enable only relatively thick color filters (≥100s of µm), are usually limited to small clear apertures (few cm), and offer poor off-axis performance. Here, we report on a family of monolithic, thin-film, birefringent PIFs formed using liquid crystal polymer (LCP) network materials, also known as reactive mesogens. These multi-twist retarders (MTRs) are only a few µm thick and have a single alignment surface. They offer high color saturation with a notch-type pass/stopband, analogous to Solc PIFs and stable off-axis performance. Here, we apply simplifying assumptions inspired by Solc PIFs, and develop a design method resulting in MTRs with an alternating achiral/chiral architecture. We theoretically and experimentally presented three types of MTR color filters (blue-yellow, green-magenta, and cyan-red), which manifest strong color filtering behavior and improved angular performance (up to ±20°) with larger color space coverage and high total light efficiency compared to their Solc filters counterparts. Such high-saturated and wide-viewing MTR color filters can be promising elements to maintain the system field of view (FOV) in the next-generation displays or spectral imaging applications.
Collapse
|
2
|
Ghobadi A, Hajian H, Butun B, Ozbay E. Strong Interference in Planar, Multilayer Perfect Absorbers: Achieving High-Operational Performances in Visible and Near-Infrared Regimes. IEEE NANOTECHNOLOGY MAGAZINE 2019. [DOI: 10.1109/mnano.2019.2916113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Ghobadi A, Hajian H, Soydan MC, Butun B, Ozbay E. Lithography-Free Planar Band-Pass Reflective Color Filter Using A Series Connection of Cavities. Sci Rep 2019; 9:290. [PMID: 30670767 PMCID: PMC6342952 DOI: 10.1038/s41598-018-36540-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/23/2018] [Indexed: 12/03/2022] Open
Abstract
In this article, a lithography-free multilayer based color filter is realized using a proper series connection of two cavities that shows relatively high efficiency, high color purity, and a wide view angle. The proposed structure is a metal-insulator-metal-insulator-semiconductor (MIMIS) design. To optimize the device performance, at the first step, transfer matrix method (TMM) modeling is utilized to find the right choices of materials for each layer. Simulations are carried out later on to optimize the geometries of the layers to obtain our desired colors. Finally, the optimized devices are fabricated and experimentally characterized to evaluate our modelling findings. The characterization results of the fabricated samples prove the successful formation of efficient and wide view angle color filters. Unlike previously reported FP based designs that act as a band-stop filter in reflection mode (absorbing a narrow frequency range and reflecting the rest of the spectrum), this design generates a specific color by reflecting a narrow spectral range and absorbing the rest of the spectrum. The findings of this work can be extended to other multilayer structures where an efficient connection of cavities in a tandem scheme can propose functionalities that cannot be realized with conventional FP resonators.
Collapse
Affiliation(s)
- Amir Ghobadi
- NANOTAM - Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey. .,Department of Electrical and Electronics Engineering, Bilkent University, Ankara, 06800, Turkey.
| | - Hodjat Hajian
- NANOTAM - Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Mahmut Can Soydan
- NANOTAM - Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey.,Department of Electrical and Electronics Engineering, Bilkent University, Ankara, 06800, Turkey
| | - Bayram Butun
- NANOTAM - Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Ekmel Ozbay
- NANOTAM - Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey. .,Department of Electrical and Electronics Engineering, Bilkent University, Ankara, 06800, Turkey. .,UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey. .,Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey. .,Department of Physics, Bilkent University, Ankara, 06800, Turkey.
| |
Collapse
|