1
|
Li S, Kong F, Xu H, Guo X, Li H, Ruan Y, Cao S, Guo Y. Biomimetic Polarized Light Navigation Sensor: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:5848. [PMID: 37447698 DOI: 10.3390/s23135848] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/15/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023]
Abstract
A polarized light sensor is applied to the front-end detection of a biomimetic polarized light navigation system, which is an important part of analyzing the atmospheric polarization mode and realizing biomimetic polarized light navigation, having received extensive attention in recent years. In this paper, biomimetic polarized light navigation in nature, the mechanism of polarized light navigation, point source sensor, imaging sensor, and a sensor based on micro nano machining technology are compared and analyzed, which provides a basis for the optimal selection of different polarized light sensors. The comparison results show that the point source sensor can be divided into basic point source sensor with simple structure and a point source sensor applied to integrated navigation. The imaging sensor can be divided into a simple time-sharing imaging sensor, a real-time amplitude splitting sensor that can detect images of multi-directional polarization angles, a real-time aperture splitting sensor that uses a light field camera, and a real-time focal plane light splitting sensor with high integration. In recent years, with the development of micro and nano machining technology, polarized light sensors are developing towards miniaturization and integration. In view of this, this paper also summarizes the latest progress of polarized light sensors based on micro and nano machining technology. Finally, this paper summarizes the possible future prospects and current challenges of polarized light sensor design, providing a reference for the feasibility selection of different polarized light sensors.
Collapse
Affiliation(s)
- Shunzi Li
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Fang Kong
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
| | - Han Xu
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiaohan Guo
- School of Information Science and Engineering, Shandong University, Qingdao 266237, China
| | - Haozhe Li
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yaohuang Ruan
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Shouhu Cao
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yinjing Guo
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
2
|
Liang H, Chua Y, Wang J, Li Q, Yu F, Zhu M, Peng G. Polarized light compass decoding. APPLIED OPTICS 2022; 61:9247-9255. [PMID: 36607060 DOI: 10.1364/ao.473630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/05/2022] [Indexed: 06/17/2023]
Abstract
The brains of some insects can encode and decode polarization information and obtain heading angle information. Referring to the encoding ability of insects, exponential function encoding is designed to improve the stability of the polarized light compass artificial neural network. However, in the decoding process, only neurons with the largest activation degree are used for decoding (maximum value decoding), so the heading information contained in other neurons is not used. Therefore, average value decoding (AVD) and weighted AVD are proposed to use the heading information contained in multiple neurons to determine the heading. In addition, concerning the phenomenon of threshold activation of insect neurons, threshold value decoding (TVD) and weighted TVD are proposed, which can effectively eliminate the interference of neurons with low activation. Moreover, this paper proposes to improve the heading determination accuracy of the artificial neural network through pre-training. The simulation and experimental results show that the new, to the best of our knowledge, decoding methods and pre-training can effectively improve the heading determination accuracy of the artificial neural network.
Collapse
|
3
|
Liang H, Bai H, Li Z, Cao Y. Polarized light sun position determination artificial neural network. APPLIED OPTICS 2022; 61:1456-1463. [PMID: 35201031 DOI: 10.1364/ao.453177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Our previous work has constructed a polarized light orientation determination (PLOD) artificial neural network. Although a PLOD network can determine the solar azimuth angle, it cannot determine the solar elevation angle. Therefore, this paper proposes an artificial neural network for polarized light solar position determination (PLSPD), which has two branches: the solar azimuth angle determination branch and the solar elevation angle determination branch. Since the solar elevation angle has no cyclic characteristics, and the angle range of the solar elevation angle is different from that of the solar azimuth angle, the solar elevation angle exponential function encoding is redesigned. In addition, compared with the PLOD, the PLSPD deletes a local full connection layer to simplify the network structure. The experimental results show that the PLSPD can determine not only the solar azimuth angle but also the solar elevation angle, and the solar azimuth angle determination accuracy of the PLSPD is higher than that of the PLOD.
Collapse
|
4
|
Liang H, Bai H, Liu N, Shen K. Limitation of Rayleigh sky model for bioinspired polarized skylight navigation in three-dimensional attitude determination. BIOINSPIRATION & BIOMIMETICS 2020; 15:046007. [PMID: 32106105 DOI: 10.1088/1748-3190/ab7ab7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Insects such as desert ants and drosophilae can sense polarized skylight for navigation. Inspired by insects, many researchers have begun to study how to use skylight polarization patterns for attitude determination. The Rayleigh sky model has become the most widely used skylight polarization model for bioinspired polarized skylight navigation due to its simplicity and practicality. However, this is an ideal model considering only single Rayleigh scatter events, and the limitation of this model in bio-inspired attitude determination has not been paid much attention and lacks strict inference proof. To address this problem, the rotational and plane symmetry of the Rayleigh sky model are analyzed in detail, and it is theoretically proved that this model contains only single solar vector information, which contains only two independent scalar pieces of attitude information, so it is impossible to determine three Euler angles simultaneously in real-time. To further verify this conclusion, based on a designed hypothetical polarization camera, we discuss what conditions different three-dimensional attitudes must satisfy so that the polarization images taken at different 3D attitudes are the same; this indicates that multiple solutions will appear when only using the Rayleigh sky model to determine 3D attitude. In conclusion, due to its single solar vector information and the existence of multiple solutions, it is fully proved that 3D attitude cannot be determined in real time based only upon the Rayleigh sky model. Code is available at: https://github.com/HuajuLiang/HypotheticalPolarizationCamera.
Collapse
Affiliation(s)
- Huaju Liang
- School of Energy and Power Engineering, Nanjing University of Science and Technology (NJUST), Nanjing, People's Republic of China
| | | | | | | |
Collapse
|
5
|
Liang H, Bai H, Liu N, Sui X. Polarized skylight compass based on a soft-margin support vector machine working in cloudy conditions. APPLIED OPTICS 2020; 59:1271-1279. [PMID: 32225383 DOI: 10.1364/ao.381612] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
The skylight polarization pattern, which is a result of the scattering of unpolarized sunlight by particles in the atmosphere, can be used by many insects for navigation. Inspired by insects, several polarization navigation sensors have been designed and combined with various heading determination methods in recent years. However, up until now, few of these studies have fully considered the influences of different meteorological conditions, which play key roles in navigation accuracy, especially in cloudy weather. Therefore, this study makes a major contribution to the study on bio-inspired heading determination by designing a skylight compass method to suppress cloud disturbances. The proposed method transforms the heading determination problem into a binary classification problem by segmentation, connected component detection, and inversion. Considering the influences of noise and meteorological conditions, the binary classification problem is solved by the soft-margin support vector machine. In addition, to verify this method, a pixelated polarization compass platform is constructed that can take polarization images at four different orientations simultaneously in real time. Finally, field experimental results show that the designed method can more effectively suppress the interference of clouds compared with other methods.
Collapse
|
6
|
Guo X, Chu J, Wang Y, Wan Z, Li J, Lin M. Formation experiment with heading angle reference using sky polarization pattern at twilight. APPLIED OPTICS 2019; 58:9331-9337. [PMID: 31873522 DOI: 10.1364/ao.58.009331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Consistency has always been an important topic in formation cooperation research. Traditional navigation methods, such as inertial navigation and geomagnetic navigation, have the disadvantages of error accumulation and low stability, thus reducing the consistency of formation. We propose to use the skylight polarization pattern to provide heading angle reference for formation cooperation of multi-agents. The experimental results show that the polarization navigation has good stability and no error accumulation. First, we analyzed the consistency of using the skylight polarization pattern to provide a heading reference for formation experiments. Then, based on the bionic polarization navigation sensor, we measured the difference of the skylight polarization azimuth of different observers at twilight. Further, a mobile robot platform was built with its heading angle provided by a polarization navigation sensor. Finally, we present an overview of a 3-robots platform formation experiment at twilight.
Collapse
|
7
|
Wang Y, Chu J, Zhang R, Li J, Guo X, Lin M. A Bio-Inspired Polarization Sensor with High Outdoor Accuracy and Central-Symmetry Calibration Method with Integrating Sphere. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3448. [PMID: 31394764 PMCID: PMC6721297 DOI: 10.3390/s19163448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/01/2019] [Accepted: 08/04/2019] [Indexed: 11/28/2022]
Abstract
A bio-inspired polarization sensor with lenses for navigation was evaluated in this study. Two new calibration methods are introduced, referred to as "central-symmetry calibration" (with an integrating sphere) and "noncontinuous calibration". A comparison between the indoor calibration results obtained from different calibration methods shows that the two proposed calibration methods are more effective. The central-symmetry calibration method optimized the nonconstant calibration voltage deviations, caused by the off-axis feature of the integrating sphere, to be constant values which can be calibrated easily. The section algorithm proposed previously showed no experimental advantages until the central-symmetry calibration method was proposed. The outdoor experimental results indicated that the indoor calibration parameters did not perform very well in practice outdoor conditions. To establish the reason, four types of calibration parameters were analyzed using the replacement method. It can be concluded that three types can be easily calibrated or affect the sensor accuracy slightly. However, before the sensor is used outdoors every time, the last type must be replaced with the corresponding outdoor parameter, and the calculation needs a precise rotary table. This parameter, which is mainly affected by the spectrum of incident light, is the main factor determining the sensor accuracy. After calibration, the sensor reaches an indoor accuracy of ±0.009° and a static outdoor accuracy of ±0.05° under clear sky conditions. The dynamic outdoor experiment shows a ±0.5° heading deviation between the polarization sensor and the inertial navigation system with a ±0.06° angular accuracy.
Collapse
Affiliation(s)
- Yinlong Wang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Jinkui Chu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China.
| | - Ran Zhang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Jinshan Li
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Xiaoqing Guo
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Muyin Lin
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
8
|
Guan L, Li S, Zhai L, Liu S, Liu H, Lin W, Cui Y, Chu J, Xie H. Study on skylight polarization patterns over the ocean for polarized light navigation application. APPLIED OPTICS 2018; 57:6243-6251. [PMID: 30118011 DOI: 10.1364/ao.57.006243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Polarized skylight navigation has excellent navigation performance with no error accumulation over time and low susceptibility to interference. The skylight polarization distribution contains rich directional information, such as the solar meridian, the neutral point, and the polarization angle, which plays a key role in the polarization navigation. But up to now the polarizations of both sunlit and moonlit skies have been investigated mainly over the land. In this work, the polarization distribution patterns of the skylight over the East China Sea and the Yellow Sea were studied. The polarization patterns were captured continuously during daytime and nighttime by using a full-sky imaging polarimetry system and then compared with the simulation results using the libRadtran radiative transfer software package. The result shows that the skylight polarization distribution over the sea has almost the same pattern as that on the land. The accuracy of the angle of polarization and the degree of polarization dropped significantly under the cloudy sky. It was found that when the ship sailed on the sea, the direction of the real meridian was close to the solar azimuth during the daytime and close to the lunar azimuth during the nighttime. It was also found that the nautical twilight polarization distribution was affected by both the solar polarization and the lunar polarization, but the solar polarization was dominant. The experiments show that the skylight polarization distribution pattern over the sea can still be applied in the field of polarization navigation. Thus, it is feasible for ships and unmanned aerial vehicles to use the polarized skylight to navigate and orient on the sea.
Collapse
|