1
|
Baričević Z, Ayar Z, Leitao SM, Mladinic M, Fantner GE, Ban J. Label-Free Long-Term Methods for Live Cell Imaging of Neurons: New Opportunities. BIOSENSORS 2023; 13:404. [PMID: 36979616 PMCID: PMC10046152 DOI: 10.3390/bios13030404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Time-lapse light microscopy combined with in vitro neuronal cultures has provided a significant contribution to the field of Developmental Neuroscience. The establishment of the neuronal polarity, i.e., formation of axons and dendrites, key structures responsible for inter-neuronal signaling, was described in 1988 by Dotti, Sullivan and Banker in a milestone paper that continues to be cited 30 years later. In the following decades, numerous fluorescently labeled tags and dyes were developed for live cell imaging, providing tremendous advancements in terms of resolution, acquisition speed and the ability to track specific cell structures. However, long-term recordings with fluorescence-based approaches remain challenging because of light-induced phototoxicity and/or interference of tags with cell physiology (e.g., perturbed cytoskeletal dynamics) resulting in compromised cell viability leading to cell death. Therefore, a label-free approach remains the most desirable method in long-term imaging of living neurons. In this paper we will focus on label-free high-resolution methods that can be successfully used over a prolonged period. We propose novel tools such as scanning ion conductance microscopy (SICM) or digital holography microscopy (DHM) that could provide new insights into live cell dynamics during neuronal development and regeneration after injury.
Collapse
Affiliation(s)
- Zrinko Baričević
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (Z.B.); (M.M.)
| | - Zahra Ayar
- Laboratory for Bio- and Nano-Instrumentation, Institute of Bioengineering, School of Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland; (Z.A.); (S.M.L.)
| | - Samuel M. Leitao
- Laboratory for Bio- and Nano-Instrumentation, Institute of Bioengineering, School of Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland; (Z.A.); (S.M.L.)
| | - Miranda Mladinic
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (Z.B.); (M.M.)
| | - Georg E. Fantner
- Laboratory for Bio- and Nano-Instrumentation, Institute of Bioengineering, School of Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland; (Z.A.); (S.M.L.)
| | - Jelena Ban
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (Z.B.); (M.M.)
| |
Collapse
|
2
|
Picazo-Bueno JÁ, Barroso Á, Ketelhut S, Schnekenburger J, Micó V, Kemper B. Single capture bright field and off-axis digital holographic microscopy. OPTICS LETTERS 2023; 48:876-879. [PMID: 36790964 DOI: 10.1364/ol.478674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
We report on a single capture approach for simultaneous incoherent bright field (BF) and laser-based quantitative phase imaging (QPI). Common-path digital holographic microscopy (DHM) is implemented in parallel with BF imaging within the optical path of a commercial optical microscope to achieve spatially multiplexed recording of white light images and digital off-axis holograms, which are subsequently numerically demultiplexed. The performance of the proposed multimodal concept is firstly determined by investigations on microspheres. Then, the application for label-free dual-mode QPI and BF imaging of living pancreatic tumor cells is demonstrated.
Collapse
|
3
|
Alonso D, Garcia J, Micó V. Fluholoscopy-Compact and Simple Platform Combining Fluorescence and Holographic Microscopy. BIOSENSORS 2023; 13:253. [PMID: 36832019 PMCID: PMC9954010 DOI: 10.3390/bios13020253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The combination of different imaging modalities into single imaging platforms has a strong potential in biomedical sciences as it permits the analysis of complementary properties of the target sample. Here, we report on an extremely simple, cost-effective, and compact microscope platform for achieving simultaneous fluorescence and quantitative phase imaging modes with the capability of working in a single snapshot. It is based on the use of a single illumination wavelength to both excite the sample's fluorescence and provide coherent illumination for phase imaging. After passing the microscope layout, the two imaging paths are separated using a bandpass filter, and the two imaging modes are simultaneously obtained using two digital cameras. We first present calibration and analysis of both fluorescence and phase imaging modalities working independently and, later on, experimental validation for the proposed common-path dual-mode imaging platform considering static (resolution test targets, fluorescent micro-beads, and water-suspended lab-made cultures) as well as dynamic (flowing fluorescent beads, human sperm cells, and live specimens from lab-made cultures) samples.
Collapse
|
4
|
Braidotti N, do R. B. F. Lima MA, Zanetti M, Rubert A, Ciubotaru C, Lazzarino M, Sbaizero O, Cojoc D. The Role of Cytoskeleton Revealed by Quartz Crystal Microbalance and Digital Holographic Microscopy. Int J Mol Sci 2022; 23:ijms23084108. [PMID: 35456926 PMCID: PMC9029771 DOI: 10.3390/ijms23084108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
The connection between cytoskeleton alterations and diseases is well known and has stimulated research on cell mechanics, aiming to develop reliable biomarkers. In this study, we present results on rheological, adhesion, and morphological properties of primary rat cardiac fibroblasts, the cytoskeleton of which was altered by treatment with cytochalasin D (Cyt-D) and nocodazole (Noc), respectively. We used two complementary techniques: quartz crystal microbalance (QCM) and digital holographic microscopy (DHM). Qualitative data on cell viscoelasticity and adhesion changes at the cell–substrate near-interface layer were obtained with QCM, while DHM allowed the measurement of morphological changes due to the cytoskeletal alterations. A rapid effect of Cyt-D was observed, leading to a reduction in cell viscosity, loss of adhesion, and cell rounding, often followed by detachment from the surface. Noc treatment, instead, induced slower but continuous variations in the rheological behavior for four hours of treatment. The higher vibrational energy dissipation reflected the cell’s ability to maintain a stable attachment to the substrate, while a cytoskeletal rearrangement occurs. In fact, along with the complete disaggregation of microtubules at prolonged drug exposure, a compensatory effect of actin polymerization emerged, with increased stress fiber formation.
Collapse
Affiliation(s)
- Nicoletta Braidotti
- Department of Physics, University of Trieste, Via A. Valerio 2, 34127 Trieste, Italy; (N.B.); (M.A.d.R.B.F.L.); (M.Z.)
- Consiglio Nazionale delle Ricerche (CNR), Istituto Officina dei Materiali (IOM), Area Science Park-Basovizza, Strada Statale 14, Km 163,5, 34149 Trieste, Italy; (C.C.); (M.L.); (D.C.)
| | - Maria Augusta do R. B. F. Lima
- Department of Physics, University of Trieste, Via A. Valerio 2, 34127 Trieste, Italy; (N.B.); (M.A.d.R.B.F.L.); (M.Z.)
- Consiglio Nazionale delle Ricerche (CNR), Istituto Officina dei Materiali (IOM), Area Science Park-Basovizza, Strada Statale 14, Km 163,5, 34149 Trieste, Italy; (C.C.); (M.L.); (D.C.)
| | - Michele Zanetti
- Department of Physics, University of Trieste, Via A. Valerio 2, 34127 Trieste, Italy; (N.B.); (M.A.d.R.B.F.L.); (M.Z.)
- Consiglio Nazionale delle Ricerche (CNR), Istituto Officina dei Materiali (IOM), Area Science Park-Basovizza, Strada Statale 14, Km 163,5, 34149 Trieste, Italy; (C.C.); (M.L.); (D.C.)
| | - Alessandro Rubert
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio 6/A, 34127 Trieste, Italy;
| | - Catalin Ciubotaru
- Consiglio Nazionale delle Ricerche (CNR), Istituto Officina dei Materiali (IOM), Area Science Park-Basovizza, Strada Statale 14, Km 163,5, 34149 Trieste, Italy; (C.C.); (M.L.); (D.C.)
| | - Marco Lazzarino
- Consiglio Nazionale delle Ricerche (CNR), Istituto Officina dei Materiali (IOM), Area Science Park-Basovizza, Strada Statale 14, Km 163,5, 34149 Trieste, Italy; (C.C.); (M.L.); (D.C.)
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio 6/A, 34127 Trieste, Italy;
- Correspondence:
| | - Dan Cojoc
- Consiglio Nazionale delle Ricerche (CNR), Istituto Officina dei Materiali (IOM), Area Science Park-Basovizza, Strada Statale 14, Km 163,5, 34149 Trieste, Italy; (C.C.); (M.L.); (D.C.)
| |
Collapse
|
5
|
Bernecker C, Lima MARBF, Ciubotaru CD, Schlenke P, Dorn I, Cojoc D. Biomechanics of Ex Vivo-Generated Red Blood Cells Investigated by Optical Tweezers and Digital Holographic Microscopy. Cells 2021; 10:552. [PMID: 33806520 PMCID: PMC7998599 DOI: 10.3390/cells10030552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 12/16/2022] Open
Abstract
Ex vivo-generated red blood cells are a promising resource for future safe blood products, manufactured independently of voluntary blood donations. The physiological process of terminal maturation from spheroid reticulocytes to biconcave erythrocytes has not been accomplished yet. A better biomechanical characterization of cultured red blood cells (cRBCs) will be of utmost interest for manufacturer approval and therapeutic application. Here, we introduce a novel optical tweezer (OT) approach to measure the deformation and elasticity of single cells trapped away from the coverslip. To investigate membrane properties dependent on membrane lipid content, two culture conditions of cRBCs were investigated, cRBCPlasma with plasma and cRBCHPL supplemented with human platelet lysate. Biomechanical characterization of cells under optical forces proves the similar features of native RBCs and cRBCHPL, and different characteristics for cRBCPlasma. To confirm these results, we also applied a second technique, digital holographic microscopy (DHM), for cells laid on the surface. OT and DHM provided related results in terms of cell deformation and membrane fluctuations, allowing a reliable discrimination between cultured and native red blood cells. The two techniques are compared and discussed in terms of application and complementarity.
Collapse
Affiliation(s)
- Claudia Bernecker
- Clinical Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, 8036 Graz, Austria; (P.S.); (I.D.)
| | - Maria Augusta R. B. F. Lima
- CNR-IOM, National Research Council of Italy—Institute of Materials, Area Science Park, 34149 Trieste, Italy; (M.A.R.B.F.L.); (C.D.C.)
- Physics Department, University of Trieste, 34127 Trieste, Italy
| | - Catalin D. Ciubotaru
- CNR-IOM, National Research Council of Italy—Institute of Materials, Area Science Park, 34149 Trieste, Italy; (M.A.R.B.F.L.); (C.D.C.)
| | - Peter Schlenke
- Clinical Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, 8036 Graz, Austria; (P.S.); (I.D.)
| | - Isabel Dorn
- Clinical Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, 8036 Graz, Austria; (P.S.); (I.D.)
| | - Dan Cojoc
- CNR-IOM, National Research Council of Italy—Institute of Materials, Area Science Park, 34149 Trieste, Italy; (M.A.R.B.F.L.); (C.D.C.)
| |
Collapse
|
6
|
Picazo-Bueno JA, Trusiak M, Micó V. Single-shot slightly off-axis digital holographic microscopy with add-on module based on beamsplitter cube. OPTICS EXPRESS 2019; 27:5655-5669. [PMID: 30876163 DOI: 10.1364/oe.27.005655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/17/2018] [Indexed: 05/21/2023]
Abstract
Slightly off-axis digital holographic microscopy (SO-DHM) has recently emerged as a novel experimental arrangement for quantitative phase imaging (QPI). It offers improved capabilities in conventional on-axis and off-axis interferometric configurations. In this contribution, we report on a single-shot SO-DHM approach based on an add-on module adapted to the exit port of a regular microscope. The module employs a beamsplitter (BS) cube interferometer and includes, in addition, a Stokes lens (SL) for astigmatism compensation. Each recorded frame contains two fields of view (FOVs) of the sample, where each FOV is a hologram which is phase shifted by π rads with respect to the other. These two simultaneously recorded holograms are numerically processed, in order to retrieve complex amplitude distribution with enhanced quality. The tradeoff is done in the FOV which becomes penalized as a consequence of the simultaneous recording of the two holograms in a single snapshot. Experimental validation is presented for a wide variety of samples using a regular Olympus BX-60 upright microscope. The proposed approach provides an optimized use of the imaging system, in terms of the space-bandwidth product, in comparison with off-axis configuration; allows the analysis of fast-dynamic events, owing to its single-shot capability when compared with on-axis arrangement; and becomes easily implementable in conventional white-light microscopes for upgrading them into holographic microscopes for QPI.
Collapse
|