Pan W, Jin L, Wang J, Wang R, Zhang H, Yingtian X, Zhao X, Li Y, Ma X. All-normal-dispersion dissipative soliton fiber laser using an offset-splicing graded-index-multimode-fiber-based saturable absorber.
APPLIED OPTICS 2021;
60:923-928. [PMID:
33690399 DOI:
10.1364/ao.413601]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
All-normal-dispersion (ANDi) dissipative soliton mode-locking is realized based on nonlinear multimode interference (NMI), which is implemented by offset-splicing three pieces of graded-index multimode fibers (GIMFs) and acts as a saturable absorber. The higher-order modes can be excited by offset-splicing GIMFs (OS-GIMFs), which eliminates adding the step multimode fiber (SIMF) into the resonant cavity and the precise length requirement of the SIMF. In the experiment, the stable dissipative soliton mode-locking at 1030 nm can be obtained with the pulse width of 7.3 ps and the repetition rate of 20.52 MHz, and the bandwidth is 6.98 nm. The maximum output is 3.2 mW with the pump power of 257 mW. The OS-GIMFs can significantly improve the saturated absorption and can easily realize dissipative soliton mode-locking in ANDi regions, which makes it attractive in ultrafast photonics.
Collapse