1
|
Alharthi F, Apachigawo I, Solanki D, Khan S, Singh H, Khan MM, Pradhan P. Dual Photonics Probing of Nano- to Submicron-Scale Structural Alterations in Human Brain Tissues/Cells and Chromatin/DNA with the Progression of Alzheimer's Disease. Int J Mol Sci 2024; 25:12211. [PMID: 39596277 PMCID: PMC11595041 DOI: 10.3390/ijms252212211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Understanding alterations in structural disorders in tissue/cells/building blocks, such as DNA/chromatin in the human brain, at the nano to submicron level provides us with efficient biomarkers for Alzheimer's detection. Here, we report a dual photonics technique to detect nano- to submicron-scale alterations in brain tissues/cells and DNA/chromatin due to the early to late progression of Alzheimer's disease in humans. Using a recently developed mesoscopic light transport technique, fine-focused nano-sensitive partial wave spectroscopy (PWS), we measure the degree of structural disorder in tissues. Furthermore, the chemical-specific inverse participation ratio technique (IPR) was used to measure the DNA/chromatin structural alterations. The results of the PWS and IPR experiments showed a significant increase in the degree of structural disorder at the nano to submicron scale at different stages of AD relative to their controls for both the tissue/cell and DNA cellular levels. The increase in the structural disorder in cells/tissues and DNA/chromatin in the nuclei can be attributed to higher mass density fluctuations in the tissue and DNA/chromatin damage in the nuclei caused by the rearrangements of macromolecules due to the deposition of the amyloid beta protein and damage in DNA/chromatin with the progress of AD.
Collapse
Affiliation(s)
- Fatemah Alharthi
- Department of Physics and Astronomy, Mississippi State University, Mississippi State, MS 39762, USA; (F.A.); (I.A.); (D.S.)
| | - Ishmael Apachigawo
- Department of Physics and Astronomy, Mississippi State University, Mississippi State, MS 39762, USA; (F.A.); (I.A.); (D.S.)
| | - Dhruvil Solanki
- Department of Physics and Astronomy, Mississippi State University, Mississippi State, MS 39762, USA; (F.A.); (I.A.); (D.S.)
| | - Sazzad Khan
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.)
| | - Himanshi Singh
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.)
| | - Mohammad Moshahid Khan
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.)
| | - Prabhakar Pradhan
- Department of Physics and Astronomy, Mississippi State University, Mississippi State, MS 39762, USA; (F.A.); (I.A.); (D.S.)
| |
Collapse
|
2
|
Shanker A, Fröch JE, Mukherjee S, Zhelyeznyakov M, Brunton SL, Seibel EJ, Majumdar A. Quantitative phase imaging endoscopy with a metalens. LIGHT, SCIENCE & APPLICATIONS 2024; 13:305. [PMID: 39511136 PMCID: PMC11543855 DOI: 10.1038/s41377-024-01587-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 11/15/2024]
Abstract
Quantitative phase imaging (QPI) recovers the exact wavefront of light from intensity measurements. Topographical and optical density maps of translucent microscopic bodies can be extracted from these quantified phase shifts. We demonstrate quantitative phase imaging at the tip of a coherent fiber bundle using chromatic aberrations inherent in a silicon nitride hyperboloid metalens. Our method leverages spectral multiplexing to recover phase from multiple defocus planes in a single capture using a color camera. Our 0.5 mm aperture metalens shows robust quantitative phase imaging capability with a28 ∘ field of view and 0. 2 π phase resolution ( ~ 0. 1 λ in air) for experiments with an endoscopic fiber bundle. Since the spectral functionality is encoded directly in the imaging lens, the metalens acts both as a focusing element and a spectral filter. The use of a simple computational backend will enable real-time operation. Key limitations in the adoption of phase imaging methods for endoscopy such as multiple acquisition, interferometric alignment or mechanical scanning are completely mitigated in the reported metalens based QPI.
Collapse
Affiliation(s)
- Aamod Shanker
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA.
- Center for Vision Science, University of Rochester, New York, NY, 14623, USA.
| | - Johannes E Fröch
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Saswata Mukherjee
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Maksym Zhelyeznyakov
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Steven L Brunton
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98105, USA
| | - Eric J Seibel
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98105, USA
| | - Arka Majumdar
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA.
- Department of Physics, University of Washington, Seattle, 98195, USA.
| |
Collapse
|
3
|
Chaumet PC, Bon P, Maire G, Sentenac A, Baffou G. Quantitative phase microscopies: accuracy comparison. LIGHT, SCIENCE & APPLICATIONS 2024; 13:288. [PMID: 39394163 PMCID: PMC11470049 DOI: 10.1038/s41377-024-01619-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/02/2024] [Accepted: 09/01/2024] [Indexed: 10/13/2024]
Abstract
Quantitative phase microscopies (QPMs) play a pivotal role in bio-imaging, offering unique insights that complement fluorescence imaging. They provide essential data on mass distribution and transport, inaccessible to fluorescence techniques. Additionally, QPMs are label-free, eliminating concerns of photobleaching and phototoxicity. However, navigating through the array of available QPM techniques can be complex, making it challenging to select the most suitable one for a particular application. This tutorial review presents a thorough comparison of the main QPM techniques, focusing on their accuracy in terms of measurement precision and trueness. We focus on 8 techniques, namely digital holographic microscopy (DHM), cross-grating wavefront microscopy (CGM), which is based on QLSI (quadriwave lateral shearing interferometry), diffraction phase microscopy (DPM), differential phase-contrast (DPC) microscopy, phase-shifting interferometry (PSI) imaging, Fourier phase microscopy (FPM), spatial light interference microscopy (SLIM), and transport-of-intensity equation (TIE) imaging. For this purpose, we used a home-made numerical toolbox based on discrete dipole approximation (IF-DDA). This toolbox is designed to compute the electromagnetic field at the sample plane of a microscope, irrespective of the object's complexity or the illumination conditions. We upgraded this toolbox to enable it to model any type of QPM, and to take into account shot noise. In a nutshell, the results show that DHM and PSI are inherently free from artefacts and rather suffer from coherent noise; In CGM, DPC, DPM and TIE, there is a trade-off between precision and trueness, which can be balanced by varying one experimental parameter; FPM and SLIM suffer from inherent artefacts that cannot be discarded experimentally in most cases, making the techniques not quantitative especially for large objects covering a large part of the field of view, such as eukaryotic cells.
Collapse
Affiliation(s)
- Patrick C Chaumet
- Institut Fresnel, CNRS, Aix Marseille Univ, Centrale Med, Marseille, France
| | - Pierre Bon
- Université de Limoges, CNRS, XLIM, UMR 7252, F-87000, Limoges, France
| | - Guillaume Maire
- Institut Fresnel, CNRS, Aix Marseille Univ, Centrale Med, Marseille, France
| | - Anne Sentenac
- Institut Fresnel, CNRS, Aix Marseille Univ, Centrale Med, Marseille, France
| | - Guillaume Baffou
- Institut Fresnel, CNRS, Aix Marseille Univ, Centrale Med, Marseille, France.
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
4
|
Huang W, Deng Y, Feng Y, Shen B, Guo J, Hu R, Qu J, Liu L. Single-shot spatial light interference microscopy for dynamic monitoring of membrane fluctuations. OPTICS LETTERS 2024; 49:4775-4778. [PMID: 39207961 DOI: 10.1364/ol.534784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024]
Abstract
Single-shot spatial light interference microscopy (SS-SLIM) with a pair of non-polarizing beam splitters is proposed for substantially enhancing the speed and efficiency of conventional SLIM systems. Traditional methods are limited by the need for multiple-frame serial modulation and acquisition by spatial light modulators and detectors. Our approach integrates non-polarizing beam splitters to simultaneously capture four phase-shifted intensity images, increasing the imaging speed by at least fourfold while maintaining high quality. This capability is crucial for effectively monitoring the dynamic fluctuations of red blood cell membranes. Furthermore, the potential applications of the SS-SLIM system in biomedical research are demonstrated, particularly in scenarios requiring high temporal resolution and label-free imaging.
Collapse
|
5
|
Huang Z, Cao L. Quantitative phase imaging based on holography: trends and new perspectives. LIGHT, SCIENCE & APPLICATIONS 2024; 13:145. [PMID: 38937443 PMCID: PMC11211409 DOI: 10.1038/s41377-024-01453-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 06/29/2024]
Abstract
In 1948, Dennis Gabor proposed the concept of holography, providing a pioneering solution to a quantitative description of the optical wavefront. After 75 years of development, holographic imaging has become a powerful tool for optical wavefront measurement and quantitative phase imaging. The emergence of this technology has given fresh energy to physics, biology, and materials science. Digital holography (DH) possesses the quantitative advantages of wide-field, non-contact, precise, and dynamic measurement capability for complex-waves. DH has unique capabilities for the propagation of optical fields by measuring light scattering with phase information. It offers quantitative visualization of the refractive index and thickness distribution of weak absorption samples, which plays a vital role in the pathophysiology of various diseases and the characterization of various materials. It provides a possibility to bridge the gap between the imaging and scattering disciplines. The propagation of wavefront is described by the complex amplitude. The complex-value in the complex-domain is reconstructed from the intensity-value measurement by camera in the real-domain. Here, we regard the process of holographic recording and reconstruction as a transformation between complex-domain and real-domain, and discuss the mathematics and physical principles of reconstruction. We review the DH in underlying principles, technical approaches, and the breadth of applications. We conclude with emerging challenges and opportunities based on combining holographic imaging with other methodologies that expand the scope and utility of holographic imaging even further. The multidisciplinary nature brings technology and application experts together in label-free cell biology, analytical chemistry, clinical sciences, wavefront sensing, and semiconductor production.
Collapse
Affiliation(s)
- Zhengzhong Huang
- Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Liangcai Cao
- Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Hanninen A. Vibrational imaging of metabolites for improved microbial cell strains. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S22711. [PMID: 38952688 PMCID: PMC11216725 DOI: 10.1117/1.jbo.29.s2.s22711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024]
Abstract
Significance Biomanufacturing utilizes modified microbial systems to sustainably produce commercially important biomolecules for use in agricultural, energy, food, material, and pharmaceutical industries. However, technological challenges related to non-destructive and high-throughput metabolite screening need to be addressed to fully unlock the potential of synthetic biology and sustainable biomanufacturing. Aim This perspective outlines current analytical screening tools used in industrial cell strain development programs and introduces label-free vibrational spectro-microscopy as an alternative contrast mechanism. Approach We provide an overview of the analytical instrumentation currently used in the "test" portion of the design, build, test, and learn cycle of synthetic biology. We then highlight recent progress in Raman scattering and infrared absorption imaging techniques, which have enabled improved molecular specificity and sensitivity. Results Recent developments in high-resolution chemical imaging methods allow for greater throughput without compromising the image contrast. We provide a roadmap of future work needed to support integration with microfluidics for rapid screening at the single-cell level. Conclusions Quantifying the net expression of metabolites allows for the identification of cells with metabolic pathways that result in increased biomolecule production, which is essential for improving the yield and reducing the cost of industrial biomanufacturing. Technological advancements in vibrational microscopy instrumentation will greatly benefit biofoundries as a complementary approach for non-destructive cell screening.
Collapse
|
7
|
Goswami N, Anastasio MA, Popescu G. Quantitative phase imaging techniques for measuring scattering properties of cells and tissues: a review-part I. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S22713. [PMID: 39026612 PMCID: PMC11257415 DOI: 10.1117/1.jbo.29.s2.s22713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 07/20/2024]
Abstract
Significance Quantitative phase imaging (QPI) techniques offer intrinsic information about the sample of interest in a label-free, noninvasive manner and have an enormous potential for wide biomedical applications with negligible perturbations to the natural state of the sample in vitro. Aim We aim to present an in-depth review of the scattering formulation of light-matter interactions as applied to biological samples such as cells and tissues, discuss the relevant quantitative phase measurement techniques, and present a summary of various reported applications. Approach We start with scattering theory and scattering properties of biological samples followed by an exploration of various microscopy configurations for 2D QPI for measurement of structure and dynamics. Results We reviewed 157 publications and presented a range of QPI techniques and discussed suitable applications for each. We also presented the theoretical frameworks for phase reconstruction associated with the discussed techniques and highlighted their domains of validity. Conclusions We provide detailed theoretical as well as system-level information for a wide range of QPI techniques. Our study can serve as a guideline for new researchers looking for an exhaustive literature review of QPI methods and relevant applications.
Collapse
Affiliation(s)
- Neha Goswami
- University of Illinois Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
| | - Mark A. Anastasio
- University of Illinois Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| | - Gabriel Popescu
- University of Illinois Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| |
Collapse
|
8
|
Haegele S, Martínez-Cercós D, Arrés Chillón J, Paulillo B, Terborg RA, Pruneri V. Multispectral Holographic Intensity and Phase Imaging of Semitransparent Ultrathin Films. ACS PHOTONICS 2024; 11:1873-1886. [PMID: 38766501 PMCID: PMC11100288 DOI: 10.1021/acsphotonics.3c01834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/22/2024]
Abstract
In this paper, we demonstrate a novel optical characterization method for ultrathin semitransparent and absorbing materials through multispectral intensity and phase imaging. The method is based on a lateral-shearing interferometric microscopy (LIM) technique, where phase-shifting allows extraction of both the intensity and the phase of transmitted optical fields. To demonstrate the performance in characterizing semitransparent thin films, we fabricated and measured cupric oxide (CuO) seeded gold ultrathin metal films (UTMFs) with mass-equivalent thicknesses from 2 to 27 nm on fused silica substrates. The optical properties were modeled using multilayer thin film interference and a parametric model of their complex refractive indices. The UTMF samples were imaged in the spectral range from 475 to 750 nm using the proposed LIM technique, and the model parameters were fitted to the measured data in order to determine the respective complex refractive indices for varying thicknesses. Overall, by using the combined intensity and phase not only for imaging and quality control but also for determining the material properties, such as complex refractive indices, this technique demonstrates a high potential for the characterization of the optical properties, of (semi-) transparent thin films.
Collapse
Affiliation(s)
- Sebastian Haegele
- ICFO-Institut
de Ciències Fotòniques, The Barcelona Institute of Science
and Technology, Castelldefels, 08860 Barcelona, Spain
| | - Daniel Martínez-Cercós
- ICFO-Institut
de Ciències Fotòniques, The Barcelona Institute of Science
and Technology, Castelldefels, 08860 Barcelona, Spain
| | - Javier Arrés Chillón
- ICFO-Institut
de Ciències Fotòniques, The Barcelona Institute of Science
and Technology, Castelldefels, 08860 Barcelona, Spain
| | - Bruno Paulillo
- ICFO-Institut
de Ciències Fotòniques, The Barcelona Institute of Science
and Technology, Castelldefels, 08860 Barcelona, Spain
| | - Roland A. Terborg
- ICFO-Institut
de Ciències Fotòniques, The Barcelona Institute of Science
and Technology, Castelldefels, 08860 Barcelona, Spain
| | - Valerio Pruneri
- ICFO-Institut
de Ciències Fotòniques, The Barcelona Institute of Science
and Technology, Castelldefels, 08860 Barcelona, Spain
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
9
|
Calin VL, Mihailescu M, Petrescu GE, Lisievici MG, Tarba N, Calin D, Ungureanu VG, Pasov D, Brehar FM, Gorgan RM, Moisescu MG, Savopol T. Grading of glioma tumors using digital holographic microscopy. Heliyon 2024; 10:e29897. [PMID: 38694030 PMCID: PMC11061684 DOI: 10.1016/j.heliyon.2024.e29897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/14/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
Gliomas are the most common type of cerebral tumors; they occur with increasing incidence in the last decade and have a high rate of mortality. For efficient treatment, fast accurate diagnostic and grading of tumors are imperative. Presently, the grading of tumors is established by histopathological evaluation, which is a time-consuming procedure and relies on the pathologists' experience. Here we propose a supervised machine learning procedure for tumor grading which uses quantitative phase images of unstained tissue samples acquired by digital holographic microscopy. The algorithm is using an extensive set of statistical and texture parameters computed from these images. The procedure has been able to classify six classes of images (normal tissue and five glioma subtypes) and to distinguish between gliomas types from grades II to IV (with the highest sensitivity and specificity for grade II astrocytoma and grade III oligodendroglioma and very good scores in recognizing grade III anaplastic astrocytoma and grade IV glioblastoma). The procedure bolsters clinical diagnostic accuracy, offering a swift and reliable means of tumor characterization and grading, ultimately the enhancing treatment decision-making process.
Collapse
Affiliation(s)
- Violeta L. Calin
- Biophysics and Cellular Biotechnology Dept., Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., 050474, Bucharest, Romania
- Excellence Center for Research in Biophysics and Cellular Biotechnology, Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., 050474, Bucharest, Romania
| | - Mona Mihailescu
- Digital Holography Imaging and Processing Laboratory, Physics Department, Faculty of Applied Sciences, National University for Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
- Centre for Fundamental Sciences Applied in Engineering, National University for Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - George E.D. Petrescu
- Department of Neurosurgery, “Bagdasar-Arseni” Clinical Emergency Hospital, 12 Berceni st., 041915, Bucharest, Romania
- Department of Neurosurgery, Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., 050474, Bucharest, Romania
| | - Mihai Gheorghe Lisievici
- Department of Pathology, “Bagdasar Arseni” Clinical Emergency Hospital, 12 Berceni st., 041915, Bucharest, Romania
| | - Nicolae Tarba
- Doctoral School of Automatic Control and Computers, National University for Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Daniel Calin
- Biophysics and Cellular Biotechnology Dept., Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., 050474, Bucharest, Romania
| | - Victor Gabriel Ungureanu
- Biophysics and Cellular Biotechnology Dept., Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., 050474, Bucharest, Romania
| | - Diana Pasov
- Department of Pathology, “Bagdasar Arseni” Clinical Emergency Hospital, 12 Berceni st., 041915, Bucharest, Romania
| | - Felix M. Brehar
- Department of Neurosurgery, “Bagdasar-Arseni” Clinical Emergency Hospital, 12 Berceni st., 041915, Bucharest, Romania
- Department of Neurosurgery, Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., 050474, Bucharest, Romania
| | - Radu M. Gorgan
- Department of Neurosurgery, “Bagdasar-Arseni” Clinical Emergency Hospital, 12 Berceni st., 041915, Bucharest, Romania
- Department of Neurosurgery, Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., 050474, Bucharest, Romania
| | - Mihaela G. Moisescu
- Biophysics and Cellular Biotechnology Dept., Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., 050474, Bucharest, Romania
- Excellence Center for Research in Biophysics and Cellular Biotechnology, Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., 050474, Bucharest, Romania
| | - Tudor Savopol
- Biophysics and Cellular Biotechnology Dept., Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., 050474, Bucharest, Romania
- Excellence Center for Research in Biophysics and Cellular Biotechnology, Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., 050474, Bucharest, Romania
| |
Collapse
|
10
|
Huang KY, Upadhyay G, Ahn Y, Sakakura M, Pagan-Diaz GJ, Cho Y, Weiss AC, Huang C, Mitchell JW, Li J, Tan Y, Deng YH, Ellis-Mohr A, Dou Z, Zhang X, Kang S, Chen Q, Sweedler JV, Im SG, Bashir R, Chung HJ, Popescu G, Gillette MU, Gazzola M, Kong H. Neuronal innervation regulates the secretion of neurotrophic myokines and exosomes from skeletal muscle. Proc Natl Acad Sci U S A 2024; 121:e2313590121. [PMID: 38683978 PMCID: PMC11087749 DOI: 10.1073/pnas.2313590121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/06/2024] [Indexed: 05/02/2024] Open
Abstract
Myokines and exosomes, originating from skeletal muscle, are shown to play a significant role in maintaining brain homeostasis. While exercise has been reported to promote muscle secretion, little is known about the effects of neuronal innervation and activity on the yield and molecular composition of biologically active molecules from muscle. As neuromuscular diseases and disabilities associated with denervation impact muscle metabolism, we hypothesize that neuronal innervation and firing may play a pivotal role in regulating secretion activities of skeletal muscles. We examined this hypothesis using an engineered neuromuscular tissue model consisting of skeletal muscles innervated by motor neurons. The innervated muscles displayed elevated expression of mRNAs encoding neurotrophic myokines, such as interleukin-6, brain-derived neurotrophic factor, and FDNC5, as well as the mRNA of peroxisome-proliferator-activated receptor γ coactivator 1α, a key regulator of muscle metabolism. Upon glutamate stimulation, the innervated muscles secreted higher levels of irisin and exosomes containing more diverse neurotrophic microRNAs than neuron-free muscles. Consequently, biological factors secreted by innervated muscles enhanced branching, axonal transport, and, ultimately, spontaneous network activities of primary hippocampal neurons in vitro. Overall, these results reveal the importance of neuronal innervation in modulating muscle-derived factors that promote neuronal function and suggest that the engineered neuromuscular tissue model holds significant promise as a platform for producing neurotrophic molecules.
Collapse
Affiliation(s)
- Kai-Yu Huang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Gaurav Upadhyay
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Yujin Ahn
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Chan Zuckerberg Biohub Chicago, Chicago, IL60642
| | - Masayoshoi Sakakura
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Gelson J. Pagan-Diaz
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Younghak Cho
- Department of Chemical and Biomolecular Engineering and KI for the Nano Century, Korea Advanced Institute of Science and Technology, Daejeon305-701, Republic of Korea
| | - Amanda C. Weiss
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Chen Huang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Jennifer W. Mitchell
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Jiahui Li
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Yanqi Tan
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Yu-Heng Deng
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Austin Ellis-Mohr
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Zhi Dou
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Xiaotain Zhang
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Sehong Kang
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Jonathan V. Sweedler
- Chan Zuckerberg Biohub Chicago, Chicago, IL60642
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering and KI for the Nano Century, Korea Advanced Institute of Science and Technology, Daejeon305-701, Republic of Korea
| | - Rashid Bashir
- Chan Zuckerberg Biohub Chicago, Chicago, IL60642
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Hee Jung Chung
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Gabriel Popescu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Martha U. Gillette
- Chan Zuckerberg Biohub Chicago, Chicago, IL60642
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Mattia Gazzola
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Chan Zuckerberg Biohub Chicago, Chicago, IL60642
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Korea University-Korea Institute of Science and Technology Graduate School of Converging Science and Technology, Korea University, Seoul02841, Republic of Korea
| |
Collapse
|
11
|
Sun C, Wang Y, Jin X, Ni B, Xu B, Hou JJ, Zhong C, Liu J, Wu Y, Song L, Hou L, Yi M, Liu X, Xiong J. Observing perineuronal nets like structures via coaxial scattering quantitative interference imaging at multiple wavelengths. OPTICS EXPRESS 2024; 32:18150-18160. [PMID: 38858978 DOI: 10.1364/oe.521510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/02/2024] [Indexed: 06/12/2024]
Abstract
Perineuronal nets (PNNs) are important functional structures on the surface of nerve cells. Observation of PNNs usually requires dyeing or fluorescent labeling. As a network structure with a micron grid and sub-wavelength thickness but no special optical properties, quantitative phase imaging (QPI) is the only purely optical method for high-resolution imaging of PNNs. We proposed a Scattering Quantitative Interference Imaging (SQII) method which measures the geometric rather than transmission or reflection phase during the scattering process to visualize PNNs. Different from QIP methods, SQII method is sensitive to scattering and not affected by wavelength changes. Via geometric phase shifting method, we simplify the phase shift operation. The SQII method not only focuses on interference phase, but also on the interference contrast. The singularity points and phase lines of the scattering geometric phase depict the edges of the network structure and can be found at the valley area of the interference contrast parameter SINDR under different wavelengths. Our SQII method has its unique imaging properties, is very simple and easy to implement and has more worth for promotion.
Collapse
|
12
|
Verrier N, Debailleul M, Haeberlé O. Recent Advances and Current Trends in Transmission Tomographic Diffraction Microscopy. SENSORS (BASEL, SWITZERLAND) 2024; 24:1594. [PMID: 38475130 PMCID: PMC10934239 DOI: 10.3390/s24051594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Optical microscopy techniques are among the most used methods in biomedical sample characterization. In their more advanced realization, optical microscopes demonstrate resolution down to the nanometric scale. These methods rely on the use of fluorescent sample labeling in order to break the diffraction limit. However, fluorescent molecules' phototoxicity or photobleaching is not always compatible with the investigated samples. To overcome this limitation, quantitative phase imaging techniques have been proposed. Among these, holographic imaging has demonstrated its ability to image living microscopic samples without staining. However, for a 3D assessment of samples, tomographic acquisitions are needed. Tomographic Diffraction Microscopy (TDM) combines holographic acquisitions with tomographic reconstructions. Relying on a 3D synthetic aperture process, TDM allows for 3D quantitative measurements of the complex refractive index of the investigated sample. Since its initial proposition by Emil Wolf in 1969, the concept of TDM has found a lot of applications and has become one of the hot topics in biomedical imaging. This review focuses on recent achievements in TDM development. Current trends and perspectives of the technique are also discussed.
Collapse
Affiliation(s)
- Nicolas Verrier
- Institut Recherche en Informatique, Mathématiques, Automatique et Signal (IRIMAS UR UHA 7499), Université de Haute-Alsace, IUT Mulhouse, 61 rue Albert Camus, 68093 Mulhouse, France; (M.D.); (O.H.)
| | | | | |
Collapse
|
13
|
Kurata R, Toda K, Ishigane G, Naruse M, Horisaki R, Ideguchi T. Single-image phase retrieval for off-the-shelf Zernike phase-contrast microscopes. OPTICS EXPRESS 2024; 32:2202-2211. [PMID: 38297755 DOI: 10.1364/oe.509877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024]
Abstract
Quantitative phase imaging (QPI), such as digital holography, is considered a promising tool in the field of life science due to its noninvasive and quantitative visualization capabilities without the need for fluorescence labeling. However, the popularity of QPI systems is limited due to the cost and complexity of their hardware. In contrast, Zernike phase-contrast microscopy (ZPM) has been widely used in practical scenarios but has not been categorized as QPI, owing to halo and shade-off artifacts and the weak phase condition. Here, we present a single-image phase retrieval method for ZPM that addresses these issues without requiring hardware modifications. By employing a rigorous physical model of ZPM and a gradient descent algorithm for its inversion, we achieve single-shot QPI with an off-the-shelf ZPM system. Our approach is validated in simulations and experiments, demonstrating QPI of a polymer microbead and biological cells. The quantitative nature of our method for single-cell imaging is confirmed through comparisons with observations from an established QPI technique conducted through digital holography. This study paves the way for transforming non-QPI ZPM systems into QPI systems.
Collapse
|
14
|
Liu R, Wen K, Li J, Ma Y, Zheng J, An S, Min J, Zalevsky Z, Yao B, Gao P. Multi-harmonic structured illumination-based optical diffraction tomography. APPLIED OPTICS 2023; 62:9199-9206. [PMID: 38108690 DOI: 10.1364/ao.508138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023]
Abstract
Imaging speed and spatial resolution are key factors in optical diffraction tomography (ODT), while they are mutually exclusive in 3D refractive index imaging. This paper presents a multi-harmonic structured illumination-based optical diffraction tomography (MHSI-ODT) to acquire 3D refractive index (RI) maps of transparent samples. MHSI-ODT utilizes a digital micromirror device (DMD) to generate structured illumination containing multiple harmonics. For each structured illumination orientation, four spherical spectral crowns are solved from five phase-shifted holograms, meaning that the acquisition of each spectral crown costs 1.25 raw images. Compared to conventional SI-ODT, which retrieves two spectral crowns from three phase-shifted raw images, MHSI-ODT enhances the imaging speed by 16.7% in 3D RI imaging. Meanwhile, MHSI-ODT exploits both the 1st-order and the 2nd-order harmonics; therefore, it has a better intensity utilization of structured illumination. We demonstrated the performance of MHSI-ODT by rendering the 3D RI distributions of 5 µm polystyrene (PS) microspheres and biological samples.
Collapse
|
15
|
Astratov VN, Sahel YB, Eldar YC, Huang L, Ozcan A, Zheludev N, Zhao J, Burns Z, Liu Z, Narimanov E, Goswami N, Popescu G, Pfitzner E, Kukura P, Hsiao YT, Hsieh CL, Abbey B, Diaspro A, LeGratiet A, Bianchini P, Shaked NT, Simon B, Verrier N, Debailleul M, Haeberlé O, Wang S, Liu M, Bai Y, Cheng JX, Kariman BS, Fujita K, Sinvani M, Zalevsky Z, Li X, Huang GJ, Chu SW, Tzang O, Hershkovitz D, Cheshnovsky O, Huttunen MJ, Stanciu SG, Smolyaninova VN, Smolyaninov II, Leonhardt U, Sahebdivan S, Wang Z, Luk’yanchuk B, Wu L, Maslov AV, Jin B, Simovski CR, Perrin S, Montgomery P, Lecler S. Roadmap on Label-Free Super-Resolution Imaging. LASER & PHOTONICS REVIEWS 2023; 17:2200029. [PMID: 38883699 PMCID: PMC11178318 DOI: 10.1002/lpor.202200029] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 06/18/2024]
Abstract
Label-free super-resolution (LFSR) imaging relies on light-scattering processes in nanoscale objects without a need for fluorescent (FL) staining required in super-resolved FL microscopy. The objectives of this Roadmap are to present a comprehensive vision of the developments, the state-of-the-art in this field, and to discuss the resolution boundaries and hurdles which need to be overcome to break the classical diffraction limit of the LFSR imaging. The scope of this Roadmap spans from the advanced interference detection techniques, where the diffraction-limited lateral resolution is combined with unsurpassed axial and temporal resolution, to techniques with true lateral super-resolution capability which are based on understanding resolution as an information science problem, on using novel structured illumination, near-field scanning, and nonlinear optics approaches, and on designing superlenses based on nanoplasmonics, metamaterials, transformation optics, and microsphere-assisted approaches. To this end, this Roadmap brings under the same umbrella researchers from the physics and biomedical optics communities in which such studies have often been developing separately. The ultimate intent of this paper is to create a vision for the current and future developments of LFSR imaging based on its physical mechanisms and to create a great opening for the series of articles in this field.
Collapse
Affiliation(s)
- Vasily N. Astratov
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001, USA
| | - Yair Ben Sahel
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yonina C. Eldar
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Luzhe Huang
- Electrical and Computer Engineering Department, University of California, Los Angeles, California 90095, USA
- Bioengineering Department, University of California, Los Angeles, California 90095, USA
- California Nano Systems Institute (CNSI), University of California, Los Angeles, California 90095, USA
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, California 90095, USA
- Bioengineering Department, University of California, Los Angeles, California 90095, USA
- California Nano Systems Institute (CNSI), University of California, Los Angeles, California 90095, USA
- David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Nikolay Zheludev
- Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK
- Centre for Disruptive Photonic Technologies, The Photonics Institute, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Junxiang Zhao
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Zachary Burns
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Zhaowei Liu
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
- Material Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Evgenii Narimanov
- School of Electrical Engineering, and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Neha Goswami
- Quantitative Light Imaging Laboratory, Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - Gabriel Popescu
- Quantitative Light Imaging Laboratory, Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - Emanuel Pfitzner
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Philipp Kukura
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Yi-Teng Hsiao
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica 1, Roosevelt Rd. Sec. 4, Taipei 10617 Taiwan
| | - Chia-Lung Hsieh
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica 1, Roosevelt Rd. Sec. 4, Taipei 10617 Taiwan
| | - Brian Abbey
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, La Trobe University, Melbourne, Victoria, Australia
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, Australia
| | - Alberto Diaspro
- Optical Nanoscopy and NIC@IIT, CHT, Istituto Italiano di Tecnologia, Via Enrico Melen 83B, 16152 Genoa, Italy
- DIFILAB, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy
| | - Aymeric LeGratiet
- Optical Nanoscopy and NIC@IIT, CHT, Istituto Italiano di Tecnologia, Via Enrico Melen 83B, 16152 Genoa, Italy
- Université de Rennes, CNRS, Institut FOTON - UMR 6082, F-22305 Lannion, France
| | - Paolo Bianchini
- Optical Nanoscopy and NIC@IIT, CHT, Istituto Italiano di Tecnologia, Via Enrico Melen 83B, 16152 Genoa, Italy
- DIFILAB, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy
| | - Natan T. Shaked
- Tel Aviv University, Faculty of Engineering, Department of Biomedical Engineering, Tel Aviv 6997801, Israel
| | - Bertrand Simon
- LP2N, Institut d’Optique Graduate School, CNRS UMR 5298, Université de Bordeaux, Talence France
| | - Nicolas Verrier
- IRIMAS UR UHA 7499, Université de Haute-Alsace, Mulhouse, France
| | | | - Olivier Haeberlé
- IRIMAS UR UHA 7499, Université de Haute-Alsace, Mulhouse, France
| | - Sheng Wang
- School of Physics and Technology, Wuhan University, China
- Wuhan Institute of Quantum Technology, China
| | - Mengkun Liu
- Department of Physics and Astronomy, Stony Brook University, USA
- National Synchrotron Light Source II, Brookhaven National Laboratory, USA
| | - Yeran Bai
- Boston University Photonics Center, Boston, MA 02215, USA
| | - Ji-Xin Cheng
- Boston University Photonics Center, Boston, MA 02215, USA
| | - Behjat S. Kariman
- Optical Nanoscopy and NIC@IIT, CHT, Istituto Italiano di Tecnologia, Via Enrico Melen 83B, 16152 Genoa, Italy
- DIFILAB, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy
| | - Katsumasa Fujita
- Department of Applied Physics and the Advanced Photonics and Biosensing Open Innovation Laboratory (AIST); and the Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Moshe Sinvani
- Faculty of Engineering and the Nano-Technology Center, Bar-Ilan University, Ramat Gan, 52900 Israel
| | - Zeev Zalevsky
- Faculty of Engineering and the Nano-Technology Center, Bar-Ilan University, Ramat Gan, 52900 Israel
| | - Xiangping Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Guan-Jie Huang
- Department of Physics and Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shi-Wei Chu
- Department of Physics and Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Omer Tzang
- School of Chemistry, The Sackler faculty of Exact Sciences, and the Center for Light matter Interactions, and the Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv 69978, Israel
| | - Dror Hershkovitz
- School of Chemistry, The Sackler faculty of Exact Sciences, and the Center for Light matter Interactions, and the Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv 69978, Israel
| | - Ori Cheshnovsky
- School of Chemistry, The Sackler faculty of Exact Sciences, and the Center for Light matter Interactions, and the Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv 69978, Israel
| | - Mikko J. Huttunen
- Laboratory of Photonics, Physics Unit, Tampere University, FI-33014, Tampere, Finland
| | - Stefan G. Stanciu
- Center for Microscopy – Microanalysis and Information Processing, Politehnica University of Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Vera N. Smolyaninova
- Department of Physics Astronomy and Geosciences, Towson University, 8000 York Rd., Towson, MD 21252, USA
| | - Igor I. Smolyaninov
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA
| | - Ulf Leonhardt
- Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sahar Sahebdivan
- EMTensor GmbH, TechGate, Donau-City-Strasse 1, 1220 Wien, Austria
| | - Zengbo Wang
- School of Computer Science and Electronic Engineering, Bangor University, Bangor, LL57 1UT, United Kingdom
| | - Boris Luk’yanchuk
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Limin Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Alexey V. Maslov
- Department of Radiophysics, University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia
| | - Boya Jin
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001, USA
| | - Constantin R. Simovski
- Department of Electronics and Nano-Engineering, Aalto University, FI-00076, Espoo, Finland
- Faculty of Physics and Engineering, ITMO University, 199034, St-Petersburg, Russia
| | - Stephane Perrin
- ICube Research Institute, University of Strasbourg - CNRS - INSA de Strasbourg, 300 Bd. Sébastien Brant, 67412 Illkirch, France
| | - Paul Montgomery
- ICube Research Institute, University of Strasbourg - CNRS - INSA de Strasbourg, 300 Bd. Sébastien Brant, 67412 Illkirch, France
| | - Sylvain Lecler
- ICube Research Institute, University of Strasbourg - CNRS - INSA de Strasbourg, 300 Bd. Sébastien Brant, 67412 Illkirch, France
| |
Collapse
|
16
|
Aleksandrovych M, Strassberg M, Melamed J, Xu M. Polarization differential interference contrast microscopy with physics-inspired plug-and-play denoiser for single-shot high-performance quantitative phase imaging. BIOMEDICAL OPTICS EXPRESS 2023; 14:5833-5850. [PMID: 38021115 PMCID: PMC10659786 DOI: 10.1364/boe.499316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/31/2023] [Accepted: 09/15/2023] [Indexed: 12/01/2023]
Abstract
We present single-shot high-performance quantitative phase imaging with a physics-inspired plug-and-play denoiser for polarization differential interference contrast (PDIC) microscopy. The quantitative phase is recovered by the alternating direction method of multipliers (ADMM), balancing total variance regularization and a pre-trained dense residual U-net (DRUNet) denoiser. The custom DRUNet uses the Tanh activation function to guarantee the symmetry requirement for phase retrieval. In addition, we introduce an adaptive strategy accelerating convergence and explicitly incorporating measurement noise. After validating this deep denoiser-enhanced PDIC microscopy on simulated data and phantom experiments, we demonstrated high-performance phase imaging of histological tissue sections. The phase retrieval by the denoiser-enhanced PDIC microscopy achieves significantly higher quality and accuracy than the solution based on Fourier transforms or the iterative solution with total variance regularization alone.
Collapse
Affiliation(s)
- Mariia Aleksandrovych
- Dept. of Physics and Astronomy, Hunter College and the Graduate Center, The City University of New York, 695 Park Ave, New York, NY 10065, USA
| | - Mark Strassberg
- Dept. of Physics and Astronomy, Hunter College and the Graduate Center, The City University of New York, 695 Park Ave, New York, NY 10065, USA
| | - Jonathan Melamed
- Department of Pathology, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Min Xu
- Dept. of Physics and Astronomy, Hunter College and the Graduate Center, The City University of New York, 695 Park Ave, New York, NY 10065, USA
| |
Collapse
|
17
|
Ma Y, Dai T, Lei Y, Zhang L, Ma L, Liu M, An S, Zheng J, Zhuo K, Kong L, Gao P. Panoramic quantitative phase imaging of adherent live cells in a microfluidic environment. BIOMEDICAL OPTICS EXPRESS 2023; 14:5182-5198. [PMID: 37854568 PMCID: PMC10581813 DOI: 10.1364/boe.498602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/12/2023] [Accepted: 09/02/2023] [Indexed: 10/20/2023]
Abstract
Understanding how cells respond to external stimuli is crucial. However, there are a lack of inspection systems capable of simultaneously stimulating and imaging cells, especially in their natural states. This study presents a novel microfluidic stimulation and observation system equipped with flat-fielding quantitative phase contrast microscopy (FF-QPCM). This system allowed us to track the behavior of organelles in live cells experiencing controlled microfluidic stimulation. Using this innovative imaging platform, we successfully quantified the cellular response to shear stress including directional cellular shrinkage and mitochondrial distribution change in a label-free manner. Additionally, we detected and characterized the cellular response, particularly mitochondrial behavior, under varying fluidic conditions such as temperature and drug induction time. The proposed imaging platform is highly suitable for various microfluidic applications at the organelle level. We advocate that this platform will significantly facilitate life science research in microfluidic environments.
Collapse
Affiliation(s)
- Ying Ma
- School of Physics, Xidian University, Xi'an 710071, China
- Key Laboratory of Optoelectronic Perception of Complex Environment, Ministry of Education, China
- Engineering Research Center of Functional Nanomaterials, Universities of Shaanxi Province, China
| | - Taiqiang Dai
- State Key Laboratory of Military Stomatology &National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, The Fourth Military Medical University, Xi'an 710000, China
| | - Yunze Lei
- School of Physics, Xidian University, Xi'an 710071, China
- Key Laboratory of Optoelectronic Perception of Complex Environment, Ministry of Education, China
- Engineering Research Center of Functional Nanomaterials, Universities of Shaanxi Province, China
| | - Linlin Zhang
- State Key Laboratory of Military Stomatology &National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, The Fourth Military Medical University, Xi'an 710000, China
| | - Lin Ma
- School of Physics, Xidian University, Xi'an 710071, China
- Key Laboratory of Optoelectronic Perception of Complex Environment, Ministry of Education, China
- Engineering Research Center of Functional Nanomaterials, Universities of Shaanxi Province, China
| | - Min Liu
- School of Physics, Xidian University, Xi'an 710071, China
- Key Laboratory of Optoelectronic Perception of Complex Environment, Ministry of Education, China
- Engineering Research Center of Functional Nanomaterials, Universities of Shaanxi Province, China
| | - Sha An
- School of Physics, Xidian University, Xi'an 710071, China
- Key Laboratory of Optoelectronic Perception of Complex Environment, Ministry of Education, China
- Engineering Research Center of Functional Nanomaterials, Universities of Shaanxi Province, China
| | - Juanjuan Zheng
- School of Physics, Xidian University, Xi'an 710071, China
- Key Laboratory of Optoelectronic Perception of Complex Environment, Ministry of Education, China
- Engineering Research Center of Functional Nanomaterials, Universities of Shaanxi Province, China
| | - Kequn Zhuo
- School of Physics, Xidian University, Xi'an 710071, China
- Key Laboratory of Optoelectronic Perception of Complex Environment, Ministry of Education, China
- Engineering Research Center of Functional Nanomaterials, Universities of Shaanxi Province, China
| | - Liang Kong
- State Key Laboratory of Military Stomatology &National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, The Fourth Military Medical University, Xi'an 710000, China
| | - Peng Gao
- School of Physics, Xidian University, Xi'an 710071, China
- Key Laboratory of Optoelectronic Perception of Complex Environment, Ministry of Education, China
- Engineering Research Center of Functional Nanomaterials, Universities of Shaanxi Province, China
| |
Collapse
|
18
|
Pan Y, Smith ZJ, Chu K. Image reconstruction for low cost spatial light interference microscopy with fixed and arbitrary phase modulation. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2023; 40:1155-1164. [PMID: 37706768 DOI: 10.1364/josaa.485557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/06/2023] [Indexed: 09/15/2023]
Abstract
During the past decade, spatial light interference microscopy (SLIM) has undergone rapid development, evidenced by its broadening applications in biology and medicine. However, the need for an expensive spatial light modulator (SLM) may limit its adoption, and the requirement for multiple images per plane limits its speed in volumetric imaging. Here we propose to address these issues by replacing the SLM with a mask fabricated from a low cost optical density (OD) filter, and recover high contrast images computationally rather than through phase-shifting. This is done using a specially constructed Wiener filter to recover the object scattering potential. A crucial part of the Wiener filter is estimating the arbitrary phase introduced by the OD filter. Our results demonstrate that not only were we able to estimate the OD filter's phase modulation in situ, but also the contrast of the reconstructed images is greatly improved. Comparisons with other related methods are also performed, with the conclusion that the combination of an inexpensive OD mask and modified Wiener filtering leads to results that are closest to the traditional SLIM setup. Thus, we have demonstrated the feasibility of a low cost, high speed SLIM system utilizing computational phase reconstruction, paving the way for wider adoption of high resolution phase microscopy.
Collapse
|
19
|
Ma Y, Dai T, Yu L, Ma L, An S, Wang Y, Liu M, Zheng J, Kong L, Zuo C, Gao P. Reflectional quantitative differential phase microscopy using polarized wavefront phase modulation. JOURNAL OF BIOPHOTONICS 2023; 16:e202200325. [PMID: 36752421 DOI: 10.1002/jbio.202200325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/16/2022] [Accepted: 01/10/2023] [Indexed: 06/07/2023]
Abstract
Quantitative phase microscopy (QPM), as a label-free and nondestructive technique, has been playing an indispensable tool in biomedical imaging and industrial inspection. Herein, we introduce a reflectional quantitative differential phase microscopy (termed RQDPM) based on polarized wavefront phase modulation and partially coherent full-aperture illumination, which has high spatial resolution and spatio-temporal phase sensitivity and is applicable to opaque surfaces and turbid biological specimens. RQDPM does not require additional polarized devices and can be easily switched from reflectional mode to transmission mode. In addition, RQDPM inherits the characteristic of high axial resolution of differential interference contrast microscope, thereby providing topography for opaque surfaces. We experimentally demonstrate the reflectional phase imaging ability of RQDPM with several samples: semiconductor wafer, thick biological tissues, red blood cells, and Hela cells. Furthermore, we dynamically monitor the flow state of microspheres in a self-built microfluidic channel by using RQDPM converted into the transmission mode.
Collapse
Affiliation(s)
- Ying Ma
- School of Physics, Xidian University, Xi'an, China
| | - Taiqiang Dai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Lan Yu
- School of Physics, Xidian University, Xi'an, China
| | - Lin Ma
- School of Physics, Xidian University, Xi'an, China
| | - Sha An
- School of Physics, Xidian University, Xi'an, China
| | - Yang Wang
- School of Physics, Xidian University, Xi'an, China
| | - Min Liu
- School of Physics, Xidian University, Xi'an, China
| | | | - Liang Kong
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Chao Zuo
- School of Physics, Xidian University, Xi'an, China
| | - Peng Gao
- School of Physics, Xidian University, Xi'an, China
| |
Collapse
|
20
|
Lee C, Hugonnet H, Park J, Lee MJ, Park W, Park Y. Single-shot refractive index slice imaging using spectrally multiplexed optical transfer function reshaping. OPTICS EXPRESS 2023; 31:13806-13816. [PMID: 37157259 DOI: 10.1364/oe.485559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The refractive index (RI) of cells and tissues is crucial in pathophysiology as a noninvasive and quantitative imaging contrast. Although its measurements have been demonstrated using three-dimensional quantitative phase imaging methods, these methods often require bulky interferometric setups or multiple measurements, which limits the measurement sensitivity and speed. Here, we present a single-shot RI imaging method that visualizes the RI of the in-focus region of a sample. By exploiting spectral multiplexing and optical transfer function engineering, three color-coded intensity images of a sample with three optimized illuminations were simultaneously obtained in a single-shot measurement. The measured intensity images were then deconvoluted to obtain the RI image of the in-focus slice of the sample. As a proof of concept, a setup was built using Fresnel lenses and a liquid-crystal display. For validation purposes, we measured microspheres of known RI and cross-validated the results with simulated results. Various static and highly dynamic biological cells were imaged to demonstrate that the proposed method can conduct single-shot RI slice imaging of biological samples with subcellular resolution.
Collapse
|
21
|
Qin Y, Butola A, Agarwal K. 3D full-wave multi-scattering forward solver for coherent microscopes. OPTICS EXPRESS 2023; 31:15015-15034. [PMID: 37157353 DOI: 10.1364/oe.480578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A rigorous forward model solver for conventional coherent microscope is presented. The forward model is derived from Maxwell's equations and models the wave behaviour of light matter interaction. Vectorial waves and multiple-scattering effect are considered in this model. Scattered field can be calculated with given distribution of the refractive index of the biological sample. Bright field images can be obtained by combining the scattered field and reflected illumination, and experimental validation is included. Insights into the utility of the full-wave multi-scattering (FWMS) solver and comparison with the conventional Born approximation based solver are presented. The model is also generalizable to the other forms of label-free coherent microscopes, such as quantitative phase microscope and dark-field microscope.
Collapse
|
22
|
Liang F, Zhu J, Chai H, Feng Y, Zhao P, Liu S, Yang Y, Lin L, Cao L, Wang W. Non-Invasive and Minute-Frequency 3D Tomographic Imaging Enabling Long-Term Spatiotemporal Observation of Single Cell Fate. SMALL METHODS 2023:e2201492. [PMID: 36950762 DOI: 10.1002/smtd.202201492] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Non-invasive and rapid imaging technique at subcellular resolution is significantly important for multiple biological applications such as cell fate study. Label-free refractive-index (RI)-based 3D tomographic imaging constitutes an excellent candidate for 3D imaging of cellular structures, but its full potential in long-term spatiotemporal cell fate observation is locked due to the lack of an efficient integrated system. Here, a long-term 3D RI imaging system incorporating a cutting-edge white light diffraction phase microscopy module with spatiotemporal stability, and an acoustofluidic device to roll and culture single cells in a customized live cell culture chamber is reported. Using this system, 3D RI imaging experiments are conducted for 250 cells and demonstrate efficient cell identification with high accuracy. Importantly, long-term and frequency-on-demand 3D RI imaging of K562 and MCF-7 cancer cells reveal different characteristics during normal cell growth, drug-induced cell apoptosis, and necrosis of drug-treated cells. Overall, it is believed that the proposed 3D tomographic imaging technique opens up a new avenue for visualizing intracellular structures and will find many applications such as disease diagnosis and nanomedicine.
Collapse
Affiliation(s)
- Fei Liang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Junwen Zhu
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Huichao Chai
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Yongxiang Feng
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Peng Zhao
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Shaofeng Liu
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Yuanmu Yang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Linhan Lin
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Liangcai Cao
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
23
|
Venkata Satya Vithin A, Gannavarpu R. Quantitative phase gradient metrology using diffraction phase microscopy and deep learning. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2023; 40:611-619. [PMID: 37133044 DOI: 10.1364/josaa.482262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In quantitative phase microscopy, measurement of the phase gradient is an important problem for biological cell morphological studies. In this paper, we propose a method based on a deep learning approach that is capable of direct estimation of the phase gradient without the requirement of phase unwrapping and numerical differentiation operations. We show the robustness of the proposed method using numerical simulations under severe noise conditions. Further, we demonstrate the method's utility for imaging different biological cells using diffraction phase microscopy setup.
Collapse
|
24
|
Chen X, Kandel ME, He S, Hu C, Lee YJ, Sullivan K, Tracy G, Chung HJ, Kong HJ, Anastasio M, Popescu G. Artificial confocal microscopy for deep label-free imaging. NATURE PHOTONICS 2023; 17:250-258. [PMID: 37143962 PMCID: PMC10153546 DOI: 10.1038/s41566-022-01140-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/01/2022] [Indexed: 05/06/2023]
Abstract
Widefield microscopy of optically thick specimens typically features reduced contrast due to "spatial crosstalk", in which the signal at each point in the field of view is the result of a superposition from neighbouring points that are simultaneously illuminated. In 1955, Marvin Minsky proposed confocal microscopy as a solution to this problem. Today, laser scanning confocal fluorescence microscopy is broadly used due to its high depth resolution and sensitivity, but comes at the price of photobleaching, chemical, and photo-toxicity. Here, we present artificial confocal microscopy (ACM) to achieve confocal-level depth sectioning, sensitivity, and chemical specificity, on unlabeled specimens, nondestructively. We equipped a commercial laser scanning confocal instrument with a quantitative phase imaging module, which provides optical path-length maps of the specimen in the same field of view as the fluorescence channel. Using pairs of phase and fluorescence images, we trained a convolution neural network to translate the former into the latter. The training to infer a new tag is very practical as the input and ground truth data are intrinsically registered, and the data acquisition is automated. The ACM images present significantly stronger depth sectioning than the input (phase) images, enabling us to recover confocal-like tomographic volumes of microspheres, hippocampal neurons in culture, and 3D liver cancer spheroids. By training on nucleus-specific tags, ACM allows for segmenting individual nuclei within dense spheroids for both cell counting and volume measurements. In summary, ACM can provide quantitative, dynamic data, nondestructively from thick samples, while chemical specificity is recovered computationally.
Collapse
Affiliation(s)
- Xi Chen
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Currently with School of Applied and Engineering Physics, Cornell University, Ithaca, USA
| | - Mikhail E. Kandel
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Currently with Groq, 400 Castro St., Suite 600, Mountain View, CA 94041, USA
| | - Shenghua He
- Department of Computer Science & Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Chenfei Hu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Young Jae Lee
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kathryn Sullivan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Gregory Tracy
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hee Jung Chung
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hyun Joon Kong
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Mark Anastasio
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Gabriel Popescu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
25
|
Zhao Y, Popescu G. Interferometric imaging with ring-shaped apertures. OPTICS EXPRESS 2022; 30:47280-47286. [PMID: 36558659 DOI: 10.1364/oe.474294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/12/2022] [Indexed: 06/17/2023]
Abstract
We use a scattering model for image formation to demonstrate how to simulate images formed by ring-shaped illumination. The description assumes weakly scattering samples, such as phase objects of broad interest in live cell imaging, which also makes no angular approximations and covers forward and backward scattering, single-angle and angle-averaged illumination, as well as monochromatic and broadband light. The numerical experiments reveal the image formation behavior that is consistent with recent experiments reported in the literature, which shows this model can be applied to different imaging systems that are based on ring-shaped illumination with good performance, by considering the incident as a plane wave incident originating at the ring aperture.
Collapse
|
26
|
Zhao J, Matlock A, Zhu H, Song Z, Zhu J, Wang B, Chen F, Zhan Y, Chen Z, Xu Y, Lin X, Tian L, Cheng JX. Bond-selective intensity diffraction tomography. Nat Commun 2022; 13:7767. [PMID: 36522316 PMCID: PMC9755124 DOI: 10.1038/s41467-022-35329-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Recovering molecular information remains a grand challenge in the widely used holographic and computational imaging technologies. To address this challenge, we developed a computational mid-infrared photothermal microscope, termed Bond-selective Intensity Diffraction Tomography (BS-IDT). Based on a low-cost brightfield microscope with an add-on pulsed light source, BS-IDT recovers both infrared spectra and bond-selective 3D refractive index maps from intensity-only measurements. High-fidelity infrared fingerprint spectra extraction is validated. Volumetric chemical imaging of biological cells is demonstrated at a speed of ~20 s per volume, with a lateral and axial resolution of ~350 nm and ~1.1 µm, respectively. BS-IDT's application potential is investigated by chemically quantifying lipids stored in cancer cells and volumetric chemical imaging on Caenorhabditis elegans with a large field of view (~100 µm x 100 µm).
Collapse
Affiliation(s)
- Jian Zhao
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Alex Matlock
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Hongbo Zhu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China.
| | - Ziqi Song
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiabei Zhu
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Biao Wang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
| | - Fukai Chen
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Yuewei Zhan
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Zhicong Chen
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Yihong Xu
- Department of Physics, Boston University, Boston, MA, 02215, USA
| | - Xingchen Lin
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
| | - Lei Tian
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Physics, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
27
|
Li Z, Liu B, Tan D, Yang Y, Zheng M. Research on partially coherent spatial light interference microscopy. OPTICS EXPRESS 2022; 30:44850-44863. [PMID: 36522899 DOI: 10.1364/oe.474831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Based on partial coherence theory, this study rigorously deduces the principle of spatial light interference microscopy (SLIM) and improves the calculation method of SLIM. The main problem we found with SLIM is that it simply defaults the phase of the direct light to 0. To address this problem, we propose and experimentally demonstrate a double four-step phase shift method. Simulation results show that this method can reduce the relative error of oil-immersed microsphere reconstruction to about 3.7%, and for red blood cell reconstruction, the relative error can be reduced to about 13%.
Collapse
|
28
|
Ganoza-Quintana JL, Arce-Diego JL, Fanjul-Vélez F. Digital Histopathological Discrimination of Label-Free Tumoral Tissues by Artificial Intelligence Phase-Imaging Microscopy. SENSORS (BASEL, SWITZERLAND) 2022; 22:9295. [PMID: 36501995 PMCID: PMC9738430 DOI: 10.3390/s22239295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/18/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Histopathology is the gold standard for disease diagnosis. The use of digital histology on fresh samples can reduce processing time and potential image artifacts, as label-free samples do not need to be fixed nor stained. This fact allows for a faster diagnosis, increasing the speed of the process and the impact on patient prognosis. This work proposes, implements, and validates a novel digital diagnosis procedure of fresh label-free histological samples. The procedure is based on advanced phase-imaging microscopy parameters and artificial intelligence. Fresh human histological samples of healthy and tumoral liver, kidney, ganglion, testicle and brain were collected and imaged with phase-imaging microscopy. Advanced phase parameters were calculated from the images. The statistical significance of each parameter for each tissue type was evaluated at different magnifications of 10×, 20× and 40×. Several classification algorithms based on artificial intelligence were applied and evaluated. Artificial Neural Network and Decision Tree approaches provided the best general sensibility and specificity results, with values over 90% for the majority of biological tissues at some magnifications. These results show the potential to provide a label-free automatic significant diagnosis of fresh histological samples with advanced parameters of phase-imaging microscopy. This approach can complement the present clinical procedures.
Collapse
|
29
|
Cui S, Gao S, Li C, Zhang W, Yao XS. Quantitative phase imaging based on polarization encoding. OPTICS EXPRESS 2022; 30:43622-43632. [PMID: 36523056 DOI: 10.1364/oe.472373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Most optical characterization methods rely on measuring the complex optical fields emerging from the interaction between light and material systems. Nevertheless, inherent scattering and absorption cause ambiguities in both interferometric and noninterferometric attempts to measure phase. Here we demonstrate that the complete information about a probe optical field can be encoded into the states of polarization, and develop a topography measurement method by blindly varying the ambient refractive index surrounding the sample in a wedged cuvette, which is capable of simultaneously measuring the thickness and the ambient refractive index of the sample in real time, as well as extending the measurement range of the sample thickness. With the method, we have successfully measured the topography of a 136.7 µm thick coverslip by blindly changing the ambient refractive index by 0.001246, resulting in the thickest sample characterization ever achieved by quantitative phase imaging, to the best of our knowledge. An efficient and complete characterization of optical fields is critical for any high-resolution imaging approach and the technique demonstrated here should prove attractive for applications ranging from microscopy to remote sensing. Thanks to the high precision and fast response speed, this method may pave a new way for measuring the topography of the thick samples, such as biological tissues.
Collapse
|
30
|
Naseri Kouzehgarani G, Kandel ME, Sakakura M, Dupaty JS, Popescu G, Gillette MU. Circadian Volume Changes in Hippocampal Glia Studied by Label-Free Interferometric Imaging. Cells 2022; 11:2073. [PMID: 35805157 PMCID: PMC9265588 DOI: 10.3390/cells11132073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/02/2022] [Accepted: 06/17/2022] [Indexed: 12/10/2022] Open
Abstract
Complex brain functions, including learning and memory, arise in part from the modulatory role of astrocytes on neuronal circuits. Functionally, the dentate gyrus (DG) exhibits differences in the acquisition of long-term potentiation (LTP) between day and night. We hypothesize that the dynamic nature of astrocyte morphology plays an important role in the functional circuitry of hippocampal learning and memory, specifically in the DG. Standard microscopy techniques, such as differential interference contrast (DIC), present insufficient contrast for detecting changes in astrocyte structure and function and are unable to inform on the intrinsic structure of the sample in a quantitative manner. Recently, gradient light interference microscopy (GLIM) has been developed to upgrade a DIC microscope with quantitative capabilities such as single-cell dry mass and volume characterization. Here, we present a methodology for combining GLIM and electrophysiology to quantify the astrocyte morphological behavior over the day-night cycle. Colocalized measurements of GLIM and fluorescence allowed us to quantify the dry masses and volumes of hundreds of astrocytes. Our results indicate that, on average, there is a 25% cell volume reduction during the nocturnal cycle. Remarkably, this cell volume change takes place at constant dry mass, which suggests that the volume regulation occurs primarily through aqueous medium exchange with the environment.
Collapse
Affiliation(s)
- Ghazal Naseri Kouzehgarani
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA;
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.K.); (M.S.); (G.P.)
| | - Mikhail E. Kandel
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.K.); (M.S.); (G.P.)
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Masayoshi Sakakura
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.K.); (M.S.); (G.P.)
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Joshua S. Dupaty
- Department of Biomedical Engineering, Mercer University, Macon, GA 31207, USA;
| | - Gabriel Popescu
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.K.); (M.S.); (G.P.)
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Martha U. Gillette
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA;
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.K.); (M.S.); (G.P.)
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| |
Collapse
|
31
|
Ma Y, Wang Y, Ma L, Zheng J, Liu M, Gao P. Reflectional quantitative phase-contrast microscopy (RQPCM) with annular epi-illumination. APPLIED OPTICS 2022; 61:3641-3647. [PMID: 36256403 DOI: 10.1364/ao.451761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/30/2022] [Indexed: 06/16/2023]
Abstract
Quantitative phase microscopy (QPM) is a label-free microscopic technique that exploits the phase of a wave passing through a sample; hence, it has been applied to many fields, including biomedical research and industrial inspection. However, the high spatiotemporal resolution imaging of reflective samples still challenges conventional transmission QPM. In this paper, we propose reflectional quantitative phase-contrast microscopy based on annular epi-illumination of light-emitting diodes. The unscattered wave from the sample is successively phase-retarded by 0, π/2, π, and 3π/2 through a spatial light modulator, and high-resolution phase-contrast images are obtained, revealing the finer structure or three-dimensional tomography of reflective samples. With this system, we have quantitatively obtained the contour of tissue slices and silicon semiconductor wafers. We believe that the proposed system will be very helpful for the high-resolution imaging of industrial devices and biomedical dynamics.
Collapse
|
32
|
Zhao Y, Gu L, Sun H, Sha X, Li WJ. Physical Cytometry: Detecting Mass-Related Properties of Single Cells. ACS Sens 2022; 7:21-36. [PMID: 34978200 DOI: 10.1021/acssensors.1c01787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The physical properties of a single cell, such as mass, volume, and density, are important indications of the cell's metabolic characteristics and homeostasis. Precise measurement of a single cell's mass has long been a challenge due to its minute size. It is only in the past 10 years that a variety of instruments for measuring living cellular mass have emerged with the development of MEMS, microfluidics, and optics technologies. In this review, we discuss the current developments of physical cytometry for quantifying mass-related physical properties of single cells, highlighting the working principle, applications, and unique merits. The review mainly covers these measurement methods: single-cell mass cytometry, levitation image cytometry, suspended microchannel resonator, phase-shifting interferometry, and opto-electrokinetics cell manipulation. Comparisons are made between these methods in terms of throughput, content, invasiveness, compatibility, and precision. Some typical applications of these methods in pathological diagnosis, drug efficacy evaluation, disease treatment, and other related fields are also discussed in this work.
Collapse
Affiliation(s)
- Yuliang Zhao
- School of Control Engineering, Northeastern University, Qinhuangdao 066004, China
| | - Lijia Gu
- School of Control Engineering, Northeastern University, Qinhuangdao 066004, China
| | - Hui Sun
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, 999077 Hong Kong, China
| | - Xiaopeng Sha
- School of Control Engineering, Northeastern University, Qinhuangdao 066004, China
| | - Wen Jung Li
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, 999077 Hong Kong, China
| |
Collapse
|
33
|
Belashov AV, Zhikhoreva AA, Belyaeva TN, Salova AV, Kornilova ES, Semenova IV, Vasyutinskii OS. Machine Learning Assisted Classification of Cell Lines and Cell States on Quantitative Phase Images. Cells 2021; 10:2587. [PMID: 34685568 PMCID: PMC8533984 DOI: 10.3390/cells10102587] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 12/20/2022] Open
Abstract
In this report, we present implementation and validation of machine-learning classifiers for distinguishing between cell types (HeLa, A549, 3T3 cell lines) and states (live, necrosis, apoptosis) based on the analysis of optical parameters derived from cell phase images. Validation of the developed classifier shows the accuracy for distinguishing between the three cell types of about 93% and between different cell states of the same cell line of about 89%. In the field test of the developed algorithm, we demonstrate successful evaluation of the temporal dynamics of relative amounts of live, apoptotic and necrotic cells after photodynamic treatment at different doses.
Collapse
Affiliation(s)
- Andrey V. Belashov
- Ioffe Institute, 26, Polytekhnicheskaya, 194021 St. Petersburg, Russia; (A.A.Z.); (I.V.S.); (O.S.V.)
| | - Anna A. Zhikhoreva
- Ioffe Institute, 26, Polytekhnicheskaya, 194021 St. Petersburg, Russia; (A.A.Z.); (I.V.S.); (O.S.V.)
| | - Tatiana N. Belyaeva
- Institute of Cytology of RAS, 4, Tikhoretsky pr., 194064 St. Petersburg, Russia; (T.N.B.); (A.V.S.); (E.S.K.)
| | - Anna V. Salova
- Institute of Cytology of RAS, 4, Tikhoretsky pr., 194064 St. Petersburg, Russia; (T.N.B.); (A.V.S.); (E.S.K.)
| | - Elena S. Kornilova
- Institute of Cytology of RAS, 4, Tikhoretsky pr., 194064 St. Petersburg, Russia; (T.N.B.); (A.V.S.); (E.S.K.)
- Institute for Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 29, Polytekhnicheskaya, 195251 St. Petersburg, Russia
| | - Irina V. Semenova
- Ioffe Institute, 26, Polytekhnicheskaya, 194021 St. Petersburg, Russia; (A.A.Z.); (I.V.S.); (O.S.V.)
| | - Oleg S. Vasyutinskii
- Ioffe Institute, 26, Polytekhnicheskaya, 194021 St. Petersburg, Russia; (A.A.Z.); (I.V.S.); (O.S.V.)
| |
Collapse
|
34
|
Popescu G. Large-scale phase retrieval. LIGHT, SCIENCE & APPLICATIONS 2021; 10:175. [PMID: 34475382 PMCID: PMC8413447 DOI: 10.1038/s41377-021-00616-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Gabriel Popescu
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
35
|
Taddese AM, Verrier N, Debailleul M, Courbot JB, Haeberlé O. Optimizing sample illumination scanning for reflection and 4Pi tomographic diffractive microscopy. APPLIED OPTICS 2021; 60:7745-7753. [PMID: 34613246 DOI: 10.1364/ao.435721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Tomographic diffractive microscopy (TDM) is increasingly gaining attention, owing to its high-resolution, label-free imaging capability. Fast acquisitions necessitate limiting the number of holograms to be recorded. Reconstructions then rely on optimal Fourier space filling to retain image quality and resolution, that is, they rely on optimal scanning of the tomographic illuminations. In this work, we theoretically study reflection TDM, and then the 4Pi TDM, a combination of transmission and reflection systems. Image simulations are conducted to determine optimal angular sweeping. We found that three-dimensional uniform scanning fills Fourier space the best for both reflection and 4Pi configurations, providing a better refractive index estimation for the observed sample.
Collapse
|