1
|
Espinosa J, Archid K, Pérez J, Perales E. Using a video-based eye tracker to analyse the binocular near-reflex dynamics response. Ophthalmic Physiol Opt 2023; 43:1540-1549. [PMID: 37470168 DOI: 10.1111/opo.13203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
PURPOSE This study presents a novel video-based eye-tracking system for analysing the dynamics of the binocular near-reflex response. The system enables the simultaneous measurement of convergence, divergence and pupillary size during accommodation and disaccommodation to aid the comprehensive understanding of the three-component near-reflex. METHODS A high-speed (90 Hz) video-based eye tracker was used to capture changes in eye gaze and pupil radius in 15 participants in response to altering stimulus conditions. An offline analysis involved separating the gaze vector components and pupil radius, which were fitted to a hyperbolic tangent function to characterise the dynamics of the near-reflex process. RESULTS Significant differences in the temporal parameters of the pupil radius were observed between the near-to-far and far-to-near vision changes, with faster miosis compared with mydriasis. Additionally, differences in response times were found between gaze angle components, with longer convergence times compared to changes in the vertical direction (saccades). The steady-state values of the gaze components and pupil radius were in line with theoretical expectations and previous reports. CONCLUSIONS The proposed system provides a non-invasive, portable and cost-effective method for evaluating near-reflex dynamics under natural viewing conditions using a video-based eye tracker. The sampling rate ensures the accurate assessment of vergence eye movements and pupillary dynamics. By simultaneously measuring eye convergence, divergence and pupil size, the system offers a more comprehensive assessment of the near-reflex response. This makes it a valuable tool for clinical diagnosis, research studies and investigating the effects of near work on the visual system.
Collapse
Affiliation(s)
- Julián Espinosa
- Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, Alicante, Spain
- Instituto Universitario de Física, Aplicada a las Ciencias y las Tecnologías, Universidad de Alicante, Alicante, Spain
| | - Kauzar Archid
- Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, Alicante, Spain
| | - Jorge Pérez
- Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, Alicante, Spain
- Instituto Universitario de Física, Aplicada a las Ciencias y las Tecnologías, Universidad de Alicante, Alicante, Spain
| | - Esther Perales
- Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, Alicante, Spain
- Instituto Universitario de Física, Aplicada a las Ciencias y las Tecnologías, Universidad de Alicante, Alicante, Spain
| |
Collapse
|
2
|
Marcos S, Artal P, Atchison DA, Hampson K, Legras R, Lundström L, Yoon G. Adaptive optics visual simulators: a review of recent optical designs and applications [Invited]. BIOMEDICAL OPTICS EXPRESS 2022; 13:6508-6532. [PMID: 36589577 PMCID: PMC9774875 DOI: 10.1364/boe.473458] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 05/02/2023]
Abstract
In their pioneering work demonstrating measurement and full correction of the eye's optical aberrations, Liang, Williams and Miller, [JOSA A14, 2884 (1997)10.1364/JOSAA.14.002884] showed improvement in visual performance using adaptive optics (AO). Since then, AO visual simulators have been developed to explore the spatial limits to human vision and as platforms to test non-invasively optical corrections for presbyopia, myopia, or corneal irregularities. These applications have allowed new psychophysics bypassing the optics of the eye, ranging from studying the impact of the interactions of monochromatic and chromatic aberrations on vision to neural adaptation. Other applications address new paradigms of lens designs and corrections of ocular errors. The current paper describes a series of AO visual simulators developed in laboratories around the world, key applications, and current trends and challenges. As the field moves into its second quarter century, new available technologies and a solid reception by the clinical community promise a vigorous and expanding use of AO simulation in years to come.
Collapse
Affiliation(s)
- Susana Marcos
- Center for Visual Sciences; The Institute of Optics and Flaum Eye Institute, University of Rochester, New York 14642, USA
| | - Pablo Artal
- Laboratorio de Optica, Universidad de Murcia, Campus Universitario de Espinardo, 30100, Spain
| | - David A. Atchison
- Centre for Vision and Eye Research, Queensland University of Technology, Brisbane Q, 4059, Australia
| | - Karen Hampson
- Department of Optometry, University of Manchester, Manchester M13 9PL, UK
| | - Richard Legras
- LuMIn, CNRS, ENS Paris-Saclay, Université Paris-Saclay, CentraleSupelec, Université Paris-Saclay Orsay, 91400, France
| | - Linda Lundström
- KTH (Royal Institute of Technology), Stockholm, 10691, Sweden
| | - Geunyoung Yoon
- College of Optometry, University of Houston, Houston, 77004, USA
| |
Collapse
|
3
|
Marín-Franch I, Del Águila-Carrasco AJ, Bernal-Molina P, Esteve-Taboada JJ, López-Gil N, Montés-Micó R, Kruger PB. There is more to accommodation of the eye than simply minimizing retinal blur. BIOMEDICAL OPTICS EXPRESS 2017; 8:4717-4728. [PMID: 29082097 PMCID: PMC5654812 DOI: 10.1364/boe.8.004717] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/02/2017] [Indexed: 06/07/2023]
Abstract
Eyes of children and young adults change their optical power to focus nearby objects at the retina. But does accommodation function by trial and error to minimize blur and maximize contrast as is generally accepted? Three experiments in monocular and monochromatic vision were performed under two conditions while aberrations were being corrected. In the first condition, feedback was available to the eye from both optical vergence and optical blur. In the second, feedback was only available from target blur. Accommodation was less precise for the second condition, suggesting that it is more than a trial-and-error function. Optical vergence itself seems to be an important cue for accommodation.
Collapse
Affiliation(s)
- I. Marín-Franch
- Department of Optics and Optometry and Vision Sciences, University of Valencia, Spain
- Interuniversity Laboratory for Research in Vision and Optometry, Mixed Group UVEG-UMU, Valencia-Murcia, Spain
- Department of Ophthalmology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - A. J. Del Águila-Carrasco
- Department of Optics and Optometry and Vision Sciences, University of Valencia, Spain
- Interuniversity Laboratory for Research in Vision and Optometry, Mixed Group UVEG-UMU, Valencia-Murcia, Spain
| | - P. Bernal-Molina
- Department of Optics and Optometry and Vision Sciences, University of Valencia, Spain
- Interuniversity Laboratory for Research in Vision and Optometry, Mixed Group UVEG-UMU, Valencia-Murcia, Spain
| | - J. J. Esteve-Taboada
- Department of Optics and Optometry and Vision Sciences, University of Valencia, Spain
- Interuniversity Laboratory for Research in Vision and Optometry, Mixed Group UVEG-UMU, Valencia-Murcia, Spain
| | - N. López-Gil
- Interuniversity Laboratory for Research in Vision and Optometry, Mixed Group UVEG-UMU, Valencia-Murcia, Spain
- Science Vision Group (CiViUM), Instituto Universitario de Investigación en Envejecimiento, University of Murcia, Spain
| | - R. Montés-Micó
- Department of Optics and Optometry and Vision Sciences, University of Valencia, Spain
- Interuniversity Laboratory for Research in Vision and Optometry, Mixed Group UVEG-UMU, Valencia-Murcia, Spain
| | - P. B. Kruger
- State College of Optometry, State University of New York, New York, USA
| |
Collapse
|
4
|
Marcos S, Werner JS, Burns SA, Merigan WH, Artal P, Atchison DA, Hampson KM, Legras R, Lundstrom L, Yoon G, Carroll J, Choi SS, Doble N, Dubis AM, Dubra A, Elsner A, Jonnal R, Miller DT, Paques M, Smithson HE, Young LK, Zhang Y, Campbell M, Hunter J, Metha A, Palczewska G, Schallek J, Sincich LC. Vision science and adaptive optics, the state of the field. Vision Res 2017; 132:3-33. [PMID: 28212982 PMCID: PMC5437977 DOI: 10.1016/j.visres.2017.01.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 12/27/2022]
Abstract
Adaptive optics is a relatively new field, yet it is spreading rapidly and allows new questions to be asked about how the visual system is organized. The editors of this feature issue have posed a series of question to scientists involved in using adaptive optics in vision science. The questions are focused on three main areas. In the first we investigate the use of adaptive optics for psychophysical measurements of visual system function and for improving the optics of the eye. In the second, we look at the applications and impact of adaptive optics on retinal imaging and its promise for basic and applied research. In the third, we explore how adaptive optics is being used to improve our understanding of the neurophysiology of the visual system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yuhua Zhang
- University of Alabama at Birmingham, Birmingham, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Metlapally S, Tong JL, Tahir HJ, Schor CM. Potential role for microfluctuations as a temporal directional cue to accommodation. J Vis 2016; 16:19. [PMID: 27120075 PMCID: PMC4900136 DOI: 10.1167/16.6.19] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The goal was to revisit an important, yet unproven notion that accommodative microfluctuations facilitate the determination of direction (sign) of abrupt focus changes in the stimulus to accommodation. We contaminated the potential temporal cues from natural accommodative microfluctuations by presenting uncorrelated external (screen) temporal defocus noise that combined with the retinal image effects of natural microfluctuations. A polychromatic Maltese spoke pattern thus either modulated defocus at a combination of two temporal frequencies (on-screen noise condition) or was static (control condition). The on-screen conditions were combined with step changes in optical vergence that were randomized in direction and magnitude. Five subjects monocularly viewed stimuli through a Badal optical system in a Maxwellian view. An artificial 4-mm aperture was imaged at the entrance pupil of the eye. Wavefront aberrations were measured dynamically at 50 Hz using a custom Shack–Hartmann aberrometer. Dynamic changes in the Zernike defocus term with step changes in optical vergence were analyzed. We calculated the percentage of correct directional responses for 1, 2, and 3 D accommodative and disaccommodative step stimuli using preset criteria for latency, velocity, and persistence of the response. The on-screen noise condition reduced the percent-correct responses compared to the static stimulus, suggesting that this manipulation affected the detectability of the sign of the accommodative stimulus. Several possible reasons and implications of this result are discussed.
Collapse
|
6
|
Chirre E, Prieto P, Artal P. Dynamics of the near response under natural viewing conditions with an open-view sensor. BIOMEDICAL OPTICS EXPRESS 2015; 6:4200-11. [PMID: 26504666 PMCID: PMC4605075 DOI: 10.1364/boe.6.004200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/21/2015] [Accepted: 09/24/2015] [Indexed: 05/21/2023]
Abstract
We have studied the temporal dynamics of the near response (accommodation, convergence and pupil constriction) in healthy subjects when accommodation was performed under natural binocular and monocular viewing conditions. A binocular open-view multi-sensor based on an invisible infrared Hartmann-Shack sensor was used for non-invasive measurements of both eyes simultaneously in real time at 25Hz. Response times for each process under different conditions were measured. The accommodative responses for binocular vision were faster than for monocular conditions. When one eye was blocked, accommodation and convergence were triggered simultaneously and synchronized, despite the fact that no retinal disparity was available. We found that upon the onset of the near target, the unblocked eye rapidly changes its line of sight to fix it on the stimulus while the blocked eye moves in the same direction, producing the equivalent to a saccade, but then converges to the (blocked) target in synchrony with accommodation. This open-view instrument could be further used for additional experiments with other tasks and conditions.
Collapse
Affiliation(s)
- Emmanuel Chirre
- Laboratorio de Óptica, Instituto Universitario de Investigación en Óptica y Nanofísica, Universidad de Murcia, Campus de Espinardo (Edificio 34), E-30100, Murcia Spain ;
| | - Pedro Prieto
- Laboratorio de Óptica, Instituto Universitario de Investigación en Óptica y Nanofísica, Universidad de Murcia, Campus de Espinardo (Edificio 34), E-30100, Murcia Spain ;
| | - Pablo Artal
- Laboratorio de Óptica, Instituto Universitario de Investigación en Óptica y Nanofísica, Universidad de Murcia, Campus de Espinardo (Edificio 34), E-30100, Murcia Spain ;
| |
Collapse
|
7
|
Metlapally S, Tong JL, Tahir HJ, Schor CM. The impact of higher-order aberrations on the strength of directional signals produced by accommodative microfluctuations. J Vis 2014; 14:14.12.25. [PMID: 25342542 DOI: 10.1167/14.12.25] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
It has been proposed that the accommodation system could perform contrast discrimination between the two dioptric extremes of accommodative microfluctuations to extract directional signals for reflex accommodation. Higher-order aberrations (HOAs) may have a significant influence on the strength of these contrast signals. Our goal was to compute the effect HOAs may have on contrast signals for stimuli within the upper defocus limit by comparing computed microcontrast fluctuations with psychophysical contrast increment thresholds (Bradley & Ohzawa, 1986). Wavefront aberrations were measured while subjects viewed a Maltese spoke stimulus monocularly. Computations were performed for accommodation or disaccommodation stimuli from a 3 Diopter (D) baseline. Microfluctuations were estimated from the standard deviation of the wavefronts over time at baseline. Through-focus Modulation Transfer, optical contrast increments (ΔC), and Weber fractions (ΔC/C) were derived from point spread functions computed from the wavefronts at baseline for 2 and 4 cycles per degree (cpd) components, with and without HOAs. The ΔCs thus computed from the wavefronts were compared with psychophysical contrast increment threshold data. Microfluctuations are potentially useful for extracting directional information for defocus values within 3 D, where contrast increments for the 2 or 4 cpd components exceed psychophysical thresholds. HOAs largely reduce contrast signals produced by microfluctuations, depending on the mean focus error, and their magnitude in individual subjects, and they may shrink the effective stimulus range for reflex accommodation. The upper defocus limit could therefore be constrained by discrimination of microcontrast fluctuations.
Collapse
Affiliation(s)
| | | | - Humza J Tahir
- School of Optometry, University of California, Berkeley, CA, USA University of Manchester, UK
| | - Clifton M Schor
- School of Optometry, University of California, Berkeley, CA, USA
| |
Collapse
|
8
|
Williams DR. Imaging single cells in the living retina. Vision Res 2011; 51:1379-96. [PMID: 21596053 DOI: 10.1016/j.visres.2011.05.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/29/2011] [Accepted: 05/01/2011] [Indexed: 12/31/2022]
Abstract
A quarter century ago, we were limited to a macroscopic view of the retina inside the living eye. Since then, new imaging technologies, including confocal scanning laser ophthalmoscopy, optical coherence tomography, and adaptive optics fundus imaging, transformed the eye into a microscope in which individual cells can now be resolved noninvasively. These technologies have enabled a wide range of studies of the retina that were previously impossible.
Collapse
Affiliation(s)
- David R Williams
- Center for Visual Science, William G. Allyn Professor of Medical Optics, University of Rochester, Rochester, NY 14627-0270, United States.
| |
Collapse
|