1
|
Yuan K, Huang R, Gong K, Xiao Z, Chen J, Cai S, Shen J, Xiong Z, Lin Z. Smartphone-based hand-held polarized light microscope for on-site pharmaceutical crystallinity characterization. Anal Bioanal Chem 2023:10.1007/s00216-023-04582-1. [PMID: 36786836 DOI: 10.1007/s00216-023-04582-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/22/2023] [Accepted: 01/31/2023] [Indexed: 02/15/2023]
Abstract
Polarized light microscopy (PLM) is a common but critical method for pharmaceutical crystallinity characterization, which has been widely introduced for research purposes or drug testing and is recommended by many pharmacopeias around the world. To date, crystallinity characterization of pharmaceutical solids is restricted to laboratories due to the relatively bulky design of the conventional PLM system, while little attention has been paid to on-site, portable, and low-cost applications. Herein, we developed a smartphone-based polarized microscope with an ultra-miniaturization design ("hand-held" scale) for these purposes. The compact system consists of an optical lens, two polarizers, and a tailor-made platform to hold the smartphone. Analytical performance parameters including resolution, imaging quality of interference color, and imaging reproducibility were measured. In a first approach, we illustrated the suitability of the device for pharmaceutical crystallinity characterization and obtained high-quality birefringence images comparable to a conventional PLM system, and we also showed the great promise of the device for on-site characterization with high flexibility. In a second approach, we employed the device as a proof of concept for a wider application ranging from liquid crystal to environmental pollutants or tissues from plants. As such, this smartphone-based hand-held polarized light microscope shows great potential in helping pharmacists both for research purposes and on-site drug testing, not to mention its broad application prospects in many other fields.
Collapse
Affiliation(s)
- Kaisong Yuan
- Bio-Analytical Laboratory, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, China.
| | - Rui Huang
- Bio-Analytical Laboratory, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, China
| | - Kaishuo Gong
- Bio-Analytical Laboratory, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, China
| | - Ziyi Xiao
- Bio-Analytical Laboratory, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, China
| | - Jialin Chen
- Bio-Analytical Laboratory, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, China
| | - Siyao Cai
- Bio-Analytical Laboratory, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, China
| | - Jiayi Shen
- Bio-Analytical Laboratory, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, China
| | - Zuer Xiong
- Bio-Analytical Laboratory, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, China
| | - Zhexuan Lin
- Bio-Analytical Laboratory, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, China.
| |
Collapse
|
2
|
Technique Evolutions for Microorganism Detection in Complex Samples: A Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rapid detection of microorganisms is a major challenge in the medical and industrial sectors. In a pharmaceutical laboratory, contamination of medical products may lead to severe health risks for patients, such as sepsis. In the specific case of advanced therapy medicinal products, contamination must be detected as early as possible to avoid late production stop and unnecessary costs. Unfortunately, the conventional methods used to detect microorganisms are based on time-consuming and labor-intensive approaches. Therefore, it is important to find new tools to detect microorganisms in a shorter time frame. This review sums up the current methods and represents the evolution in techniques for microorganism detection. First, there is a focus on promising ligands, such as aptamers and antimicrobial peptides, cheaper to produce and with a broader spectrum of detection. Then, we describe methods achieving low limits of detection, thanks to Raman spectroscopy or precise handling of samples through microfluids devices. The last part is dedicated to techniques in real-time, such as surface plasmon resonance, preventing the risk of contamination. Detection of pathogens in complex biological fluids remains a scientific challenge, and this review points toward important areas for future research.
Collapse
|
3
|
Mohammadi S, Nadaraja AV, Luckasavitch K, Jain MC, June Roberts D, Zarifi MH. A Label-Free, Non-Intrusive, and Rapid Monitoring of Bacterial Growth on Solid Medium Using Microwave Biosensor. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2020; 14:2-11. [PMID: 31715571 DOI: 10.1109/tbcas.2019.2952841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microwave resonator sensors are attractive for their contactless and label-free capability of monitoring bacterial growth in liquid media. This paper outlines a new label-free microwave biosensor based on a pair of planar split ring resonators for non-invasive monitoring of bacterial growth on a solid agar media. The sensor is comprised of two split ring resonators with slightly different resonant frequencies for differential operation. The transmission coefficient (S21) of the sensor is considered as the sensor's response with a designed and measured quality factor above 200 to ensure a high-resolution operation of the biosensor. Two resonant frequencies of 1.95 and 2.11 GHz represent the sensing signal and the reference signal, respectively. The developed sensor demonstrates high performance in monitoring the growth dynamics of Escherichia coli (E. coli) on Luria-Bertani (LB) agar with 4 mm thickness. The sensor's resonant amplitude response demonstrated 0.5 dB variation corresponding to the bacterial growth over 48 hours when bacteria were spread on LB agar starting with initial OD600 = 1.5. Moreover, 0.6 dB change in the sensor's response was observed over 96 hours of bacterial growth starting with an initial OD600 = 1.17 spotted on LB agar. The measured results fit well to the curves created using Richards' bacterial growth model, showing the strength of the sensor as a potential candidate for use in predictive food microbiology systems.
Collapse
|
4
|
Sibilo R, Pérez JM, Tebbenjohanns F, Hurth C, Pruneri V. Erratum: Surface cytometer for fluorescent detection and growth monitoring of bacteria over a large field-of-view: publisher's note. BIOMEDICAL OPTICS EXPRESS 2019; 10:3698. [PMID: 31467799 PMCID: PMC6706044 DOI: 10.1364/boe.10.003698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Indexed: 06/10/2023]
Abstract
[This corrects the article on p. 2101 in vol. 10, PMID: 31061773.].
Collapse
Affiliation(s)
- Rafaël Sibilo
- ICFO- Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Juan Miguel Pérez
- ICFO- Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Felix Tebbenjohanns
- ICFO- Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Cedric Hurth
- ICFO- Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Valerio Pruneri
- ICFO- Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
- ICREA- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|