1
|
Miler I, Rabasovic MD, Askrabic S, Stylianou A, Korac B, Korac A. Short-Term l-arginine Treatment Mitigates Early Damage of Dermal Collagen Induced by Diabetes. Bioengineering (Basel) 2024; 11:407. [PMID: 38671828 PMCID: PMC11048012 DOI: 10.3390/bioengineering11040407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Changes in the structural properties of the skin due to collagen alterations are an important factor in diabetic skin complications. Using a combination of photonic methods as an optic diagnostic tool, we investigated the structural alteration in rat dermal collagen I in diabetes, and after short-term l-arginine treatment. The multiplex approach shows that in the early phase of diabetes, collagen fibers are partially damaged, resulting in the heterogeneity of fibers, e.g., "patchy patterns" of highly ordered/disordered fibers, while l-arginine treatment counteracts to some extent the conformational changes in collagen-induced by diabetes and mitigates the damage. Raman spectroscopy shows intense collagen conformational changes via amides I and II in diabetes, suggesting that diabetes-induced structural changes in collagen originate predominantly from individual collagen molecules rather than supramolecular structures. There is a clear increase in the amounts of newly synthesized proline and hydroxyproline after treatment with l-arginine, reflecting the changed collagen content. This suggests that it might be useful for treating and stopping collagen damage early on in diabetic skin. Our results demonstrate that l-arginine attenuates the early collagen I alteration caused by diabetes and that it could be used to treat and prevent collagen damage in diabetic skin at a very early stage.
Collapse
Affiliation(s)
- Irena Miler
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia;
| | - Mihailo D. Rabasovic
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, University of Belgrade, Pregrevica 118, 11000 Belgrade, Serbia; (S.A.)
| | - Sonja Askrabic
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, University of Belgrade, Pregrevica 118, 11000 Belgrade, Serbia; (S.A.)
| | - Andreas Stylianou
- School of Science, European University Cyprus, 6 Diogenous Str., Egkomi, Nicosia 2404, Cyprus;
| | - Bato Korac
- Institute for Biological Research “Sinisa Stankovic”, National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia;
| | - Aleksandra Korac
- Center for Electron Microscopy, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| |
Collapse
|
2
|
Dooley M, Luckett J, Alexander MR, Matousek P, Dehghani H, Ghaemmaghami AM, Notingher I. Optimization of diffuse Raman spectroscopy for in-vivo quantification of foreign body response in a small animal model. BIOMEDICAL OPTICS EXPRESS 2023; 14:6592-6606. [PMID: 38420302 PMCID: PMC10898571 DOI: 10.1364/boe.512118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 03/02/2024]
Abstract
Diffuse Raman spectroscopy (DRS) allows subsurface molecular analysis of optically turbid samples. Numerical modeling of light propagation was used as a method for improving the design of an DRS instrument to maximize the signal to noise ratio (SNR) while ensuring safe laser exposure parameters required for in-vivo measurements. Experimental validation of the model was performed on both phantom samples and disks implanted postmortem to mimic the typical response to foreign bodies (formation of a fibrotic capsule around an implant). A reduction of laser exposure of over 1500-fold was achieved over previous studies whilst maintaining the same Raman collection rates and reaching the safe power density of 3 mW/mm2. The validation of this approach in a subcutaneous implant in a mouse cadaver showed a further improvement of 1.5-fold SNR, with a thickness limit of detection for the fibrotic layer of 23 µm, under the same acquisition times. In the animal body, a thickness limit of detection of 16 µm was achieved. These results demonstrate the feasibility of numerical model-based optimization for DRS, and that the technique can be improved sufficiently to be used for in-vivo measurement of collagenous capsule formation as a result of the foreign body response in murine models.
Collapse
Affiliation(s)
- Max Dooley
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Jeni Luckett
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Morgan R. Alexander
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Pavel Matousek
- STFC Rutherford Appleton Laboratory, Central Laser Facility, Research Complex at Harwell, UK Research and Innovation (UKRI), Harwell Oxford OX11 0QX, UK
| | - Hamid Dehghani
- School of Computer Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Amir M. Ghaemmaghami
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Ioan Notingher
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
3
|
Vardaki MZ, Pavlou E, Simantiris N, Lampri E, Seretis K, Kourkoumelis N. Towards non-invasive monitoring of non-melanoma skin cancer using spatially offset Raman spectroscopy. Analyst 2023; 148:4386-4395. [PMID: 37593769 DOI: 10.1039/d3an00684k] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
BCC (basal cell carcinoma) and SCC (squamous cell carcinoma) account for the vast majority of cases of non-melanoma skin cancer (NMSC). The gold standard for the diagnosis remains biopsy, which, however, is an invasive and time-consuming procedure. In this study, we employed spatially offset Raman spectroscopy (SORS), a non-invasive approach, allowing the assessment of deeper skin tissue levels and collection of Raman photons with a bias towards the different layers of epidermis, where the non-melanoma cancers are initially formed and expand. Ex vivo Raman measurements were acquired from 22 skin biopsies using conventional back-scattering and a defocused modality (with and without a spatial offset). The spectral data were assessed against corresponding histopathological data to determine potential prognostic factors for lesion detection. The results revealed a positive correlation of protein and lipid content with the SCC and BCC types, respectively. By further correlating with patient data, multiple factor analysis (MFA) demonstrated a strong clustering of variables based on sex and age in all modalities. Specifically for the defocused modality (zero and 2 mm offset), further clustering occurred based on pathology. This study demonstrates the utility of the SORS technology in NMSC diagnosis prior to histopathological examination on the same tissue.
Collapse
Affiliation(s)
- Martha Z Vardaki
- Department of Medical Physics, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens, 11635, Greece
| | - Eleftherios Pavlou
- Department of Medical Physics, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | | | - Evangeli Lampri
- Department of Pathology, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos Seretis
- Department of Plastic Surgery, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Nikolaos Kourkoumelis
- Department of Medical Physics, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
4
|
Quantitative Assessment of Low-Dose Photodynamic Therapy Effects on Diabetic Wound Healing Using Raman Spectroscopy. Pharmaceutics 2023; 15:pharmaceutics15020595. [PMID: 36839917 PMCID: PMC9966264 DOI: 10.3390/pharmaceutics15020595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/17/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
One of challenges that faces diabetes is the wound healing process. The delayed diabetic wound healing is caused by a complicated molecular mechanism involving numerous physiological variables. Low-dose photodynamic therapy (LDPDT) provides excellent results in rejuvenation and wound healing. In this study, the LDPDT effect on diabetic wounds in mice was studied using two photosensitizers, 5-aminolevulinic acid and methylene blue, and two laser dose expositions of 1 J/cm2 and 4 J/cm2 by Raman spectroscopy (RS). The latter was used as a noninvasive method, providing specific information about tissue state based on the fundamental vibrational modes of its molecular components. RS allows high spatial resolution acquisition of biochemical and structural information through the generation of point spectra or spectral images. An approach to in vivo quantitative assessment of diabetic wound healing state was developed. This approach is based on an application of the principal component analysis combined with the Mahalanobis metrics to skin Raman spectra, in particular, intensities of the amide I and CH2 bands.
Collapse
|
5
|
Ren X, Lin K, Hsieh CM, Liu L, Ge X, Liu Q. Optical coherence tomography-guided confocal Raman microspectroscopy for rapid measurements in tissues. BIOMEDICAL OPTICS EXPRESS 2022; 13:344-357. [PMID: 35154875 PMCID: PMC8803007 DOI: 10.1364/boe.441058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/24/2021] [Accepted: 12/06/2021] [Indexed: 05/05/2023]
Abstract
We report a joint system with both confocal Raman spectroscopy (CRS) and optical coherence tomography (OCT) modules capable of quickly addressing the region of interest in a tissue for targeted Raman measurements from OCT. By using an electrically tunable lens in the Raman module, the focus of the module can be adjusted to address any specific depth indicated in an OCT image in a few milliseconds. We demonstrate the performance of the joint system in the depth dependent measurements of an ex vivo swine tissue and in vivo human skin. This system can be useful in measuring samples embedded with small targets, for example, to identify tumors in skin in vivo and assessment of tumor margins, in which OCT can be used to perform initial real-time screening with high throughput based on morphological features to identify suspicious targets then CRS is guided to address the targets in real time and fully characterize their biochemical fingerprints for confirmation.
Collapse
Affiliation(s)
- Xiaojing Ren
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
- Equal contributors to paper
| | - Kan Lin
- School of Electrical & Electronic Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
- Equal contributors to paper
| | - Chao-Mao Hsieh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Linbo Liu
- School of Electrical & Electronic Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Xin Ge
- School of Electrical & Electronic Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Quan Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| |
Collapse
|