1
|
Ni D, Klämpfl F, Schmidt M, Hohmann M. Towards a sensing model using a random laser combined with diffuse reflectance spectroscopy. BIOMEDICAL OPTICS EXPRESS 2024; 15:4425-4437. [PMID: 39346981 PMCID: PMC11427212 DOI: 10.1364/boe.525693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 10/01/2024]
Abstract
The previous research proves that the random laser emission reflects not only the scattering properties but also the absorption properties. The random laser is therefore considered a potential tool for optical properties sensing. Although the qualitative sensing using the random laser is extensively investigated, a quantitative measurement of optical properties is still rare. In this study, a generalized mathematical quantitative model using random laser combined with diffuse reflectance spectroscopy is proposed for optical sensing in turbid media. This model describes the gain effect of the active medium and the optical properties effect of the passive medium separately. Rhodamine 6G is used as the active medium. Intralipid and ink are employed to demonstrate the effect of the scattering and absorption, respectively. The peak wavelength shift of the random laser is proved to be an ideal sensing parameter for this sensing model. It is also revealed that the scaling parameters in the sensing model are interrelated and can be simplified to one. With this combined model, the direct sensing of optical properties in diverse turbid media is promising.
Collapse
Affiliation(s)
- Dongqin Ni
- Institute of Photonic Technologies (LPT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Konrad-Zuse-Straße 3/5, 91052 Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Paul-Gordan-Straße 6, 91052 Erlangen, Germany
| | - Florian Klämpfl
- Institute of Photonic Technologies (LPT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Konrad-Zuse-Straße 3/5, 91052 Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Paul-Gordan-Straße 6, 91052 Erlangen, Germany
| | - Michael Schmidt
- Institute of Photonic Technologies (LPT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Konrad-Zuse-Straße 3/5, 91052 Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Paul-Gordan-Straße 6, 91052 Erlangen, Germany
| | - Martin Hohmann
- Institute of Photonic Technologies (LPT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Konrad-Zuse-Straße 3/5, 91052 Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Paul-Gordan-Straße 6, 91052 Erlangen, Germany
| |
Collapse
|
2
|
An J, Zhang Q, Zhang L, Liu C, Liu D, Jia M, Gao F. Neural network-based optimization of sub-diffuse reflectance spectroscopy for improved parameter prediction and efficient data collection. JOURNAL OF BIOPHOTONICS 2023; 16:e202200375. [PMID: 36740724 DOI: 10.1002/jbio.202200375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/16/2023] [Accepted: 02/02/2023] [Indexed: 05/17/2023]
Abstract
In this study, a general and systematical investigation of sub-diffuse reflectance spectroscopy is implemented. A Gegenbauer-kernel phase function-based Monte Carlo is adopted to describe photon transport more efficiently. To improve the computational efficiency and accuracy, two neural network algorithms, namely, back propagation neural network and radial basis function neural network are utilized to predict the absorption coefficient μ a , reduced scattering coefficient μ s ' and sub-diffusive quantifier γ , simultaneously, at multiple source-detector separations (SDS). The predicted results show that the three parameters can be predicated accurately by selecting five SDSs or above. Based on the simulation results, a four wavelength (520, 650, 785 and 830 nm) measurement system using five SDSs is designed by adopting phase-lock-in technique. Furtherly, the trained neural-network models are utilized to extract optical properties from the phantom and in vivo experimental data. The results verify the feasibility and effectiveness of our proposed system and methods in mucosal disease diagnosis.
Collapse
Affiliation(s)
- Jingyi An
- College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Qi Zhang
- College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Limin Zhang
- College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin, China
| | - Chenlu Liu
- Department of Oral Medicine, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Dongyuan Liu
- College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin, China
| | - Mengyu Jia
- College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin, China
| | - Feng Gao
- College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin, China
| |
Collapse
|
3
|
Development of an Endoscopic Auto-Fluorescent Sensing Device to Aid in the Detection of Breast Cancer and Inform Photodynamic Therapy. Metabolites 2022; 12:metabo12111097. [PMID: 36422237 PMCID: PMC9697641 DOI: 10.3390/metabo12111097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the most diagnosed cancer type in women, with it being the second most deadly cancer in terms of total yearly mortality. Due to the prevalence of this disease, better methods are needed for both detection and treatment. Reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are autofluorescent biomarkers that lend insight into cell and tissue metabolism. As such, we developed an endoscopic device to measure these metabolites in tissue to differentiate between malignant tumors and normal tissue. We performed initial validations in liquid phantoms as well as compared to a previously validated redox imaging system. We also imaged ex vivo tissue samples after modulation with carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) and a combination of rotenone and antimycin A. We then imaged the rim and the core of MDA-MB-231 breast cancer tumors, with our results showing that the core of a cancerous lesion has a significantly higher optical redox ratio ([FAD]/([FAD] + [NADH])) than the rim, which agrees with previously published results. The mouse muscle tissues exhibited a significantly lower FAD, higher NADH, and lower redox ratio compared to the tumor core or rim. We also used the endoscope to measure NADH and FAD after photodynamic therapy treatment, a light-activated treatment methodology. Our results found that the NADH signal increases in the malignancy rim and core, while the core of cancers demonstrated a significant increase in the FAD signal.
Collapse
|
4
|
Almajidy RK, Rackebrandt K, Gehring H, Hofmann UG. Dual Layered Models of Light Scattering in the Near Infrared B: Experimental Results with a Phantom .. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:4775-4778. [PMID: 31946929 DOI: 10.1109/embc.2019.8857788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Intralipid emulsion is often used as optical model substance to mimic living tissue's strong scattering properties. As such it is of considerable importance to utilize realistic parameters for any type of simulation or calculation in context of Near Infrared Spectroscopy. We determined optical characteristics of diluted Intralipid solutions at often used, realistic volume concentrations ρil and at two wavelengths (780nm and 850nm) in a simple phantom setup featuring multiple sensors with different source-detector-separation (SDS) and penetration depths d. Both, phantom experiments and MC simulation showed qualitatively similar results and demonstrated the influence of the three major NIRS factors, namely the penetrated layer depth (d), the Intralipid concentration ρil and the source-detector separation (SDS). The results demonstrated that light reaching the detectors is inversely proportional to ρil and d. It corroborates the need for differential measurements with at least two SDS to account for superficial large angle scattering.
Collapse
|
5
|
McClatchy DM, Rizzo EJ, Meganck J, Kempner J, Vicory J, Wells WA, Paulsen KD, Pogue BW. Calibration and analysis of a multimodal micro-CT and structured light imaging system for the evaluation of excised breast tissue. Phys Med Biol 2017; 62:8983-9000. [PMID: 29048330 PMCID: PMC5729028 DOI: 10.1088/1361-6560/aa94b6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A multimodal micro-computed tomography (CT) and multi-spectral structured light imaging (SLI) system is introduced and systematically analyzed to test its feasibility to aid in margin delineation during breast conserving surgery (BCS). Phantom analysis of the micro-CT yielded a signal-to-noise ratio of 34, a contrast of 1.64, and a minimum detectable resolution of 240 μm for a 1.2 min scan. The SLI system, spanning wavelengths 490 nm to 800 nm and spatial frequencies up to 1.37 [Formula: see text], was evaluated with aqueous tissue simulating phantoms having variations in particle size distribution, scatter density, and blood volume fraction. The reduced scattering coefficient, [Formula: see text] and phase function parameter, γ, were accurately recovered over all wavelengths independent of blood volume fractions from 0% to 4%, assuming a flat sample geometry perpendicular to the imaging plane. The resolution of the optical system was tested with a step phantom, from which the modulation transfer function was calculated yielding a maximum resolution of 3.78 cycles per mm. The three dimensional spatial co-registration between the CT and optical imaging space was tested and shown to be accurate within 0.7 mm. A freshly resected breast specimen, with lobular carcinoma, fibrocystic disease, and adipose, was imaged with the system. The micro-CT provided visualization of the tumor mass and its spiculations, and SLI yielded superficial quantification of light scattering parameters for the malignant and benign tissue types. These results appear to be the first demonstration of SLI combined with standard medical tomography for imaging excised tumor specimens. While further investigations are needed to determine and test the spectral, spatial, and CT features required to classify tissue, this study demonstrates the ability of multimodal CT/SLI to quantify, visualize, and spatially navigate breast tumor specimens, which could potentially aid in the assessment of tumor margin status during BCS.
Collapse
Affiliation(s)
- David M McClatchy
- Thayer School of Engineering, Dartmouth College, 14 Engineering Dr., Hanover, NH 03755, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Naglič P, Pernuš F, Likar B, Bürmen M. Lookup table-based sampling of the phase function for Monte Carlo simulations of light propagation in turbid media. BIOMEDICAL OPTICS EXPRESS 2017; 8:1895-1910. [PMID: 28663872 PMCID: PMC5480587 DOI: 10.1364/boe.8.001895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/25/2017] [Accepted: 02/15/2017] [Indexed: 05/28/2023]
Abstract
Analytical expressions for sampling the scattering angle from a phase function in Monte Carlo simulations of light propagation are available only for a limited number of phase functions. Consequently, numerical sampling methods based on tabulated values are often required instead. By using Monte Carlo simulated reflectance, we compare two existing and propose an improved numerical sampling method and show that both the number of the tabulated values and the numerical sampling method significantly influence the accuracy of the simulated reflectance. The provided results and guidelines should serve as a good starting point for conducting computationally efficient Monte Carlo simulations with numerical phase function sampling.
Collapse
|
7
|
Naglic P, Pernuš F, Likar B, Bürmen M. Estimation of optical properties by spatially resolved reflectance spectroscopy in the subdiffusive regime. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:95003. [PMID: 27653934 DOI: 10.1117/1.jbo.21.9.095003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/23/2016] [Indexed: 05/20/2023]
Abstract
We propose and objectively evaluate an inverse Monte Carlo model for estimation of absorption and reduced scattering coefficients and similarity parameter ? from spatially resolved reflectance (SRR) profiles in the subdiffusive regime. The similarity parameter ? carries additional information on the phase function that governs the angular properties of scattering in turbid media. The SRR profiles at five source-detector separations were acquired with an optical fiber probe. The inverse Monte Carlo model was based on a cost function that enabled robust estimation of optical properties from a few SRR measurements without a priori knowledge about spectral dependencies of the optical properties. Validation of the inverse Monte Carlo model was performed on synthetic datasets and measured SRR profiles of turbid phantoms comprising molecular dye and polystyrene microspheres. We observed that the additional similarity parameter ? substantially reduced the reflectance variability arising from the phase function properties and significantly improved the accuracy of the inverse Monte Carlo model. However, the observed improvement of the extended inverse Monte Carlo model was limited to reduced scattering coefficients exceeding ?15??cm?1, where the relative root-mean-square errors of the estimated optical properties were well within 10%.
Collapse
Affiliation(s)
- Peter Naglic
- University of Ljubljana, Laboratory of Imaging Technologies, Faculty of Electrical Engineering, Tržaška cesta 25, SI-1000, Ljubljana, Slovenia
| | - Franjo Pernuš
- University of Ljubljana, Laboratory of Imaging Technologies, Faculty of Electrical Engineering, Tržaška cesta 25, SI-1000, Ljubljana, Slovenia
| | - Boštjan Likar
- University of Ljubljana, Laboratory of Imaging Technologies, Faculty of Electrical Engineering, Tržaška cesta 25, SI-1000, Ljubljana, Slovenia
| | - Miran Bürmen
- University of Ljubljana, Laboratory of Imaging Technologies, Faculty of Electrical Engineering, Tržaška cesta 25, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
8
|
Aernouts B, Van Beers R, Watté R, Huybrechts T, Lammertyn J, Saeys W. Visible and near-infrared bulk optical properties of raw milk. J Dairy Sci 2015. [DOI: 10.3168/jds.2015-9630] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Naglič P, Pernuš F, Likar B, Bürmen M. Limitations of the commonly used simplified laterally uniform optical fiber probe-tissue interface in Monte Carlo simulations of diffuse reflectance. BIOMEDICAL OPTICS EXPRESS 2015; 6:3973-88. [PMID: 26504647 PMCID: PMC4605056 DOI: 10.1364/boe.6.003973] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 05/20/2023]
Abstract
Light propagation models often simplify the interface between the optical fiber probe tip and tissue to a laterally uniform boundary with mismatched refractive indices. Such simplification neglects the precise optical properties of the commonly used probe tip materials, e.g. stainless steel or black epoxy. In this paper, we investigate the limitations of the laterally uniform probe-tissue interface in Monte Carlo simulations of diffuse reflectance. In comparison to a realistic probe-tissue interface that accounts for the layout and properties of the probe tip materials, the simplified laterally uniform interface is shown to introduce significant errors into the simulated diffuse reflectance.
Collapse
Affiliation(s)
- Peter Naglič
- Laboratory of Imaging Technologies, Faculty of Electrical Engineering, University of Ljubljana, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Franjo Pernuš
- Laboratory of Imaging Technologies, Faculty of Electrical Engineering, University of Ljubljana, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Boštjan Likar
- Laboratory of Imaging Technologies, Faculty of Electrical Engineering, University of Ljubljana, Tržaška cesta 25, 1000 Ljubljana, Slovenia
- Sensum, Computer Vision Systems d.o.o., Tehnološki park 21, 1000 Ljubljana, Slovenia
| | - Miran Bürmen
- Laboratory of Imaging Technologies, Faculty of Electrical Engineering, University of Ljubljana, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Bodenschatz N, Krauter P, Foschum F, Nothelfer S, Liemert A, Simon E, Kröner S, Kienle A. Surface layering properties of Intralipid phantoms. Phys Med Biol 2015; 60:1171-83. [PMID: 25590919 DOI: 10.1088/0031-9155/60/3/1171] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Intralipid has become an extensively studied and widely used reference and calibration phantom for diffuse optical imaging technologies. In this study we call attention to the layering properties of Intralipid emulsions, which are commonly assumed to have homogeneous optical properties. By measurement of spatial frequency domain reflectance in combination with an analytical solution of the radiative transfer equation for two-layered media, we make quantitative investigations on the formation of a surface layer on different dilutions of Intralipid. Our findings are verified by an independent spatially resolved reflectance setup giving evidence of a time dependent, thin and highly scattering surface layer on top of Intralipid-water emulsions. This layer should be considered when using Intralipid as an optical calibration or reference phantom.
Collapse
Affiliation(s)
- Nico Bodenschatz
- Institut für Lasertechnologien in der Medizin und Meßtechnik, Helmholtzstr. 12, D-89081 Ulm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Shochat A, Abookasis D. Differential effects of early postinjury treatment with neuroprotective drugs in a mouse model using diffuse reflectance spectroscopy. NEUROPHOTONICS 2015; 2:015001. [PMID: 26157981 PMCID: PMC4478758 DOI: 10.1117/1.nph.2.1.015001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/31/2014] [Indexed: 05/07/2023]
Abstract
The time required for the arrival of an ambulance crew and administration of first aid is critical to clinical outcome, particularly in the case of head injury victims requiring neuroprotective drugs following a car accident, falls, and assaults. Short response times of the medical team, together with proper treatment, can limit injury severity and even save a life before transportation to the nearest medical center. We present a comparative evaluation of five different neuroprotective drugs frequently used in intensive care and operating units in the early phase following traumatic brain injury (TBI): hypertonic saline (HTS), mannitol, morphine, melatonin, and minocycline. The effectiveness of these drugs in terms of changes in brain tissue morphology (cell organelle size, density, distribution, etc.) and biochemical tissue properties (chromophores' content) was experimentally evaluated through analysis of the spectral reduced scattering and optical absorption coefficient parameters in the near-infrared (NIR) optical range (650 to 1000 nm). Experiments were conducted on anesthetized male mice subjected to a noninvasive closed head weight-drop model of focal TBI ([Formula: see text] and [Formula: see text] control) and monitored using an NIR diffuse reflectance spectroscopy system utilizing independent source-detector separation and location. After 10 min of baseline measurement, focal TBI was induced and measurements were conducted for 20 min. Subsequently, a neuroprotective drug was administrated and measurements were recorded for another 30 min. This work's major findings are threefold: first, minocycline was found to improve hemodynamic outcome at the earliest time postinjury. Second, HTS decreased brain water content and inhibited the increase in intracranial pressure. Third, the efficacy of neuroprotective drugs can be monitored noninvasively with diffuse reflectance spectroscopy. The demonstrated ability to noninvasively detect cerebral physiological properties following early administration of neuroprotective drugs underlines the need for more extensive investigation of the combined use of clinical drugs in larger-scale preclinical experiments to find the most beneficial drug treatment for brain injury patients.
Collapse
Affiliation(s)
- Ariel Shochat
- Ariel University, Department of Electrical and Electronics Engineering, Ariel 40700, Israel
| | - David Abookasis
- Ariel University, Department of Electrical and Electronics Engineering, Ariel 40700, Israel
| |
Collapse
|
12
|
Kanick SC, McClatchy DM, Krishnaswamy V, Elliott JT, Paulsen KD, Pogue BW. Sub-diffusive scattering parameter maps recovered using wide-field high-frequency structured light imaging. BIOMEDICAL OPTICS EXPRESS 2014; 5:3376-90. [PMID: 25360357 PMCID: PMC4206309 DOI: 10.1364/boe.5.003376] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/22/2014] [Accepted: 08/25/2014] [Indexed: 05/03/2023]
Abstract
This study investigates the hypothesis that structured light reflectance imaging with high spatial frequency patterns [Formula: see text] can be used to quantitatively map the anisotropic scattering phase function distribution [Formula: see text] in turbid media. Monte Carlo simulations were used in part to establish a semi-empirical model of demodulated reflectance ([Formula: see text]) in terms of dimensionless scattering [Formula: see text] and [Formula: see text], a metric of the first two moments of the [Formula: see text] distribution. Experiments completed in tissue-simulating phantoms showed that simultaneous analysis of [Formula: see text] spectra sampled at multiple [Formula: see text] in the frequency range [0.05-0.5] [Formula: see text] allowed accurate estimation of both [Formula: see text] in the relevant tissue range [0.4-1.8] [Formula: see text], and [Formula: see text] in the range [1.4-1.75]. Pilot measurements of a healthy volunteer exhibited [Formula: see text]-based contrast between scar tissue and surrounding normal skin, which was not as apparent in wide field diffuse imaging. These results represent the first wide-field maps to quantify sub-diffuse scattering parameters, which are sensitive to sub-microscopic tissue structures and composition, and therefore, offer potential for fast diagnostic imaging of ultrastructure on a size scale that is relevant to surgical applications.
Collapse
|
13
|
Aernouts B, Watté R, Van Beers R, Delport F, Merchiers M, De Block J, Lammertyn J, Saeys W. Flexible tool for simulating the bulk optical properties of polydisperse spherical particles in an absorbing host: experimental validation. OPTICS EXPRESS 2014; 22:20223-20238. [PMID: 25321232 DOI: 10.1364/oe.22.020223] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this study, a flexible tool to simulate the bulk optical properties of polydisperse spherical particles in an absorbing host medium is described. The generalized Mie solution for Maxwell's equations is consulted to simulate the optical properties for a spherical particle in an absorbing host, while polydispersity of the particle systems is supported by discretization of the provided particle size distributions. The number of intervals is optimized automatically in an efficient iterative procedure. The developed tool is validated by simulating the bulk optical properties for two aqueous nanoparticle systems and an oil-in-water emulsion in the visible and near-infrared wavelength range, taking into account the representative particle sizes and refractive indices. The simulated bulk optical properties matched closely (R2 ≥ 0.899) with those obtained by reference measurements.
Collapse
|
14
|
Greening GJ, Istfan R, Higgins LM, Balachandran K, Roblyer D, Pierce MC, Muldoon TJ. Characterization of thin poly(dimethylsiloxane)-based tissue-simulating phantoms with tunable reduced scattering and absorption coefficients at visible and near-infrared wavelengths. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:115002. [PMID: 25387084 PMCID: PMC4227531 DOI: 10.1117/1.jbo.19.11.115002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/17/2014] [Accepted: 09/26/2014] [Indexed: 05/21/2023]
Abstract
Optical phantoms are used in the development of various imaging systems. For certain applications, the development of thin phantoms that simulate the physical size and optical properties of tissue is important. Here, we demonstrate a method for producing thin phantom layers with tunable optical properties using poly(dimethylsiloxane) (PDMS) as a substrate material. The thickness of each layer (between 115 and 880 μm) was controlled using a spin coater. The reduced scattering and absorption coefficients were controlled using titanium dioxide and alcohol-soluble nigrosin, respectively. These optical coefficients were quantified at six discrete wavelengths (591, 631, 659, 691, 731, and 851 nm) at varying concentrations of titanium dioxide and nigrosin using spatial frequency domain imaging. From the presented data, we provide lookup tables to determine the appropriate concentrations of scattering and absorbing agents to be used in the design of PDMS-based phantoms with specific optical coefficients. In addition, heterogeneous phantoms mimicking the layered features of certain tissue types may be fabricated from multiple stacked layers, each with custom optical properties. These thin, tunable PDMS optical phantoms can simulate many tissue types and have broad imaging calibration applications in endoscopy, diffuse optical spectroscopic imaging, and optical coherence tomography, etc.
Collapse
Affiliation(s)
- Gage J. Greening
- University of Arkansas, Department of Biomedical Engineering, Fayetteville, Arkansas 72701, United States
| | - Raeef Istfan
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts 02215, United States
| | - Laura M. Higgins
- Rutgers, State University of New Jersey, Department of Biomedical Engineering, Piscataway, New Jersey 08854, United States
| | - Kartik Balachandran
- University of Arkansas, Department of Biomedical Engineering, Fayetteville, Arkansas 72701, United States
| | - Darren Roblyer
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts 02215, United States
| | - Mark C. Pierce
- Rutgers, State University of New Jersey, Department of Biomedical Engineering, Piscataway, New Jersey 08854, United States
| | - Timothy J. Muldoon
- University of Arkansas, Department of Biomedical Engineering, Fayetteville, Arkansas 72701, United States
- Address all correspondence to: Timothy J. Muldoon, E-mail:
| |
Collapse
|
15
|
Kanick SC, Davis SC, Zhao Y, Hasan T, Maytin EV, Pogue BW, Chapman MS. Dual-channel red/blue fluorescence dosimetry with broadband reflectance spectroscopic correction measures protoporphyrin IX production during photodynamic therapy of actinic keratosis. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:75002. [PMID: 24996661 PMCID: PMC4082494 DOI: 10.1117/1.jbo.19.7.075002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/27/2014] [Indexed: 05/10/2023]
Abstract
Dosimetry for aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) photodynamic therapy of actinic keratosis was examined with an optimized fluorescence dosimeter to measure PpIX during treatment. While insufficient PpIX generation may be an indicator of incomplete response, there exists no standardized method to quantitate PpIX production at depths in the skin during clinical treatments. In this study, a spectrometer-based point probe dosimeter system was used to sample PpIX fluorescence from superficial (blue wavelength excitation) and deeper (red wavelength excitation) tissue layers. Broadband white light spectroscopy (WLS) was used to monitor aspects of vascular physiology and inform a correction of fluorescence for the background optical properties. Measurements in tissue phantoms showed accurate recovery of blood volume fraction and reduced scattering coefficient from WLS, and a linear response of PpIX fluorescence versus concentration down to 1.95 and 250 nM for blue and red excitations, respectively. A pilot clinical study of 19 patients receiving 1-h ALA incubation before treatment showed high intrinsic variance in PpIX fluorescence with a standard deviation/mean ratio of > 0.9. PpIX fluorescence was significantly higher in patients reporting higher pain levels on a visual analog scale. These pilot data suggest that patient-specific PpIX quantitation may predict outcome response.
Collapse
Affiliation(s)
- Stephen Chad Kanick
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755
- Address all correspondence to: Stephen Chad Kanick, E-mail:
| | - Scott C. Davis
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755
| | - Yan Zhao
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114
| | | | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114
- Department of Surgery, Section of Dermatology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766
| | - M. Shane Chapman
- Department of Surgery, Section of Dermatology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766
| |
Collapse
|
16
|
Calabro KW, Bigio IJ. Influence of the phase function in generalized diffuse reflectance models: review of current formalisms and novel observations. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:75005. [PMID: 25027000 PMCID: PMC4161006 DOI: 10.1117/1.jbo.19.7.075005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/27/2014] [Accepted: 05/27/2014] [Indexed: 05/18/2023]
Abstract
Diffuse reflectance spectroscopy, which has been demonstrated as a noninvasive diagnostic technique, relies on quantitative models for extracting optical property values from turbid media, such as biological tissues. We review and compare reflectance models that have been published, and we test similar models over a much wider range of measurement parameters than previously published, with specific focus on the effects of the scattering phase function and the source-detector distance. It has previously been shown that the dependence of a forward reflectance model on the scattering phase function can be described more accurately using a variable, γ, which is a more predictive variable for reflectance than the traditional anisotropy factor, g. We show that variations in the reflectance model due to the phase function are strongly dependent on the source-detector separation, and we identify a dimensionless scattering distance at which reflectance is insensitive to the phase function. Further, we evaluate how variations in the phase function and source-detector separation affect the accuracy of inverse property extraction. By simultaneously fitting two or more reflectance spectra, measured at different source-detector separations, we also demonstrate that an estimate of γ can be extracted, in addition to the reduced scattering and absorption coefficients.
Collapse
Affiliation(s)
- Katherine W. Calabro
- Boston University, Department of Biomedical Engineering, 44 Cummington Street, Boston, Massachusetts 02215
- Synopsys Inc., 377 Simarano Drive, Marlborough, Massachusetts 01752
- Address all correspondence to: Katherine W. Calabro, E-mail:
| | - Irving J. Bigio
- Boston University, Department of Biomedical Engineering, 44 Cummington Street, Boston, Massachusetts 02215
- Boston University, Department of Electrical and Computer Engineering, 8 St. Mary’s Street, Boston, Massachusetts 02215
| |
Collapse
|
17
|
Hoy CL, Gamm UA, Sterenborg HJCM, Robinson DJ, Amelink A. Use of a coherent fiber bundle for multi-diameter single fiber reflectance spectroscopy. BIOMEDICAL OPTICS EXPRESS 2012; 3:2452-64. [PMID: 23082287 PMCID: PMC3469986 DOI: 10.1364/boe.3.002452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/18/2012] [Accepted: 07/19/2012] [Indexed: 05/22/2023]
Abstract
Multi-diameter single fiber reflectance (MDSFR) spectroscopy enables quantitative measurement of tissue optical properties, including the reduced scattering coefficient and the phase function parameter γ. However, the accuracy and speed of the procedure are currently limited by the need for co-localized measurements using multiple fiber optic probes with different fiber diameters. This study demonstrates the use of a coherent fiber bundle acting as a single fiber with a variable diameter for the purposes of MDSFR spectroscopy. Using Intralipid optical phantoms with reduced scattering coefficients between 0.24 and 3 mm(-1), we find that the spectral reflectance and effective path lengths measured by the fiber bundle (NA = 0.40) are equivalent to those measured by single solid-core fibers (NA = 0.22) for fiber diameters between 0.4 and 1.0 mm (r ≥ 0.997). This one-to-one correlation may hold for a 0.2 mm fiber diameter as well (r = 0.816); however, the experimental system used in this study suffers from a low signal-to-noise for small dimensionless reduced scattering coefficients due to spurious back reflections within the experimental system. Based on these results, the coherent fiber bundle is suitable for use as a variable-diameter fiber in clinical MDSFR quantification of tissue optical properties.
Collapse
|