1
|
Marchesini A, De Francesco F, Mattioli-Belmonte M, Zingaretti N, Riccio V, Orlando F, Zavan B, Riccio M. A New Animal Model for Pathological Subcutaneous Fibrosis: Surgical Technique and in vitro Analysis. Front Cell Dev Biol 2020; 8:542. [PMID: 32850775 PMCID: PMC7409519 DOI: 10.3389/fcell.2020.00542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/09/2020] [Indexed: 12/02/2022] Open
Abstract
Fibrosis is a condition that affects the connective tissue in an organ or tissue in the restorative or responsive phase as a result of injury. The consequences of excessive fibrotic tissue growth may lead to various physiological complications of deformity and impairment due to hypertrophic scars, keloids, and tendon adhesion without understating the psychological impact on the patient. However, no method accurately quantifies the rate and pattern of subcutaneous induced hypertrophic fibrosis. We, therefore, devised a rodent excisional model to evaluate the extent of fibrosis with talc. Tissue specimens were set on formalin, and paraffin sections for histological, immunohistochemical, and molecular analysis talc was used to induce the fibroproliferative mechanism typical of hypertrophic scars. This pathway is relevant to the activation of inflammatory and fibrotic agents to stimulate human hypertrophic scarring. This model reproduces morpho-functional features of human hypertrophic scars to investigate scar formation and assess potential anti-scarring therapies.
Collapse
Affiliation(s)
- Andrea Marchesini
- Department of Reconstructive Surgery and Hand Surgery, AOU "Ospedali Riuniti", Ancona, Italy
| | - Francesco De Francesco
- Department of Reconstructive Surgery and Hand Surgery, AOU "Ospedali Riuniti", Ancona, Italy
| | - Monica Mattioli-Belmonte
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Nicola Zingaretti
- Clinic of Plastic and Reconstructive Surgery, Department of Medical Area (DAME), Academic Hospital of Udine, University of Udine, Udine, Italy
| | - Valentina Riccio
- Veterinary Medical School, University of Camerino, Camerino, Italy
| | - Fiorenza Orlando
- Experimental Animal Models for Aging Unit, Scientific Technological Area, IRCCS INRNCA, Ancona, Italy
| | - Barbara Zavan
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Michele Riccio
- Department of Reconstructive Surgery and Hand Surgery, AOU "Ospedali Riuniti", Ancona, Italy
| |
Collapse
|
2
|
Rakotomanga P, Soussen C, Khairallah G, Amouroux M, Zaytsev S, Genina E, Chen H, Delconte A, Daul C, Tuchin V, Blondel W. Source separation approach for the analysis of spatially resolved multiply excited autofluorescence spectra during optical clearing of ex vivo skin. BIOMEDICAL OPTICS EXPRESS 2019; 10:3410-3424. [PMID: 31467786 PMCID: PMC6706026 DOI: 10.1364/boe.10.003410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 05/19/2023]
Abstract
Spatially resolved multiply excited autofluorescence spectroscopy is a valuable optical biopsy technique to investigate skin UV-visible optical properties in vivo in clinics. However, it provides bulk fluorescence signals from which the individual endogenous fluorophore contributions need to be disentangled. Skin optical clearing allows for increasing tissue transparency, thus providing access to more accurate in-depth information. The aim of the present contribution was to study the time changes in skin spatially resolved and multiply excited autofluorescence spectra during skin optical clearing. The latter spectra were acquired on an ex vivo human skin strip lying on a fluorescent gel substrate during 37 minutes of the optical clearing process of a topically applied sucrose-based solution. A Non Negative Matrix Factorization-based blind source separation approach was proposed to unmix skin tissue intrinsic fluorophore contributions and to analyze the time evolution of this mixing throughout the optical clearing process. This spectral unmixing exploited the multidimensionality of the acquired data, i.e., spectra resolved in five excitation wavelengths, four source-to-detector separations, and eight measurement times. Best fitting results between experimental and estimated spectra were obtained for optimal numbers of 3 and 4 sources. These estimated spectral sources exhibited common identifiable shapes of fluorescence emission spectra related to the fluorescent gel substrate and to known skin intrinsic fluorophores matching namely dermis collagen/elastin and epidermis flavins. The time analysis of the fluorophore contributions allowed us to highlight how the clearing process towards the deepest skin layers impacts skin autofluorescence through time, namely with a strongest contribution to the bulk autofluorescence signal of dermis collagen (respectively epidermis flavins) fluorescence at shortest (respectively longest) excitation wavelengths and longest (respectively shortest) source-to-detector separations.
Collapse
Affiliation(s)
- Prisca Rakotomanga
- Université de Lorraine, CNRS, CRAN UMR 7039, Vandoeuvre-lès-Nancy, 54500,
France
| | - Charles Soussen
- CentraleSupélec, CNRS, Université Paris-Sud, L2S UMR 8506, Gif-sur-Yvette, 91190,
France
| | - Grégoire Khairallah
- Université de Lorraine, CNRS, CRAN UMR 7039, Vandoeuvre-lès-Nancy, 54500,
France
- Metz-Thionville Regional Hospital, Department of plastic, aesthetic and reconstructive surgery, Ars-Laquenexy, 57530,
France
| | - Marine Amouroux
- Université de Lorraine, CNRS, CRAN UMR 7039, Vandoeuvre-lès-Nancy, 54500,
France
| | - Sergey Zaytsev
- Université de Lorraine, CNRS, CRAN UMR 7039, Vandoeuvre-lès-Nancy, 54500,
France
- Saratov State University, 83, Astrakhanskaya Str., Saratov, 410012,
Russia
| | - Elina Genina
- Saratov State University, 83, Astrakhanskaya Str., Saratov, 410012,
Russia
- Tomsk State University, 36 Lenin Avenue, Tomsk, 634050,
Russia
| | - Hang Chen
- Université de Lorraine, CNRS, CRAN UMR 7039, Vandoeuvre-lès-Nancy, 54500,
France
| | - Alain Delconte
- Université de Lorraine, CNRS, CRAN UMR 7039, Vandoeuvre-lès-Nancy, 54500,
France
| | - Christian Daul
- Université de Lorraine, CNRS, CRAN UMR 7039, Vandoeuvre-lès-Nancy, 54500,
France
| | - Valery Tuchin
- Saratov State University, 83, Astrakhanskaya Str., Saratov, 410012,
Russia
- Tomsk State University, 36 Lenin Avenue, Tomsk, 634050,
Russia
- Institute of Precision Mechanics and Control of the Russian Academy of Sciences, 24, Rabochaya Str., Saratov, 410028,
Russia
| | - Walter Blondel
- Université de Lorraine, CNRS, CRAN UMR 7039, Vandoeuvre-lès-Nancy, 54500,
France
| |
Collapse
|
3
|
Lee KC, Dretzke J, Grover L, Logan A, Moiemen N. A systematic review of objective burn scar measurements. BURNS & TRAUMA 2016; 4:14. [PMID: 27574684 PMCID: PMC4964074 DOI: 10.1186/s41038-016-0036-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/29/2016] [Indexed: 01/03/2023]
Abstract
BACKGROUND Problematic scarring remains a challenging aspect to address in the treatment of burns and can significantly affect the quality of life of the burn survivor. At present, there are few treatments available in the clinic to control adverse scarring, but experimental pharmacological anti-scarring strategies are now beginning to emerge. Their comparative success must be based on objective measurements of scarring, yet currently the clinical assessment of scars is not carried out systematically and is mostly based on subjective review of patients. However, several techniques and devices are being introduced that allow objective analysis of the burn scar. The aim of this article is to evaluate various objective measurement tools currently available and recommend a useful panel that is suitable for use in clinical trials of anti-scarring therapies. METHODS A systematic literature search was done using the Web of Science, PubMed and Cochrane databases. The identified devices were then classified and grouped according to the parameters they measured. The tools were then compared and assessed in terms of inter- and intra-rater reproducibility, ease of use and cost. RESULTS After duplicates were removed, 5062 articles were obtained in the search. After further screening, 157 articles which utilised objective burn scar measurement systems or tools were obtained. The scar measurement devices can be broadly classified into those measuring colour, metric variables, texture, biomechanical properties and pathophysiological disturbances. CONCLUSIONS Objective scar measurement tools allow the accurate and reproducible evaluation of scars, which is important for both clinical and scientific use. However, studies to evaluate their relative performance and merits of these tools are scarce, and there remain factors, such as itch and pain, which cannot be measured objectively. On reviewing the available evidence, a panel of devices for objective scar measurement is recommended consisting of the 3D cameras (Eykona/Lifeviz/Vectra H1) for surface area and volume, DSM II colorimeter for colour, Dermascan high-frequency ultrasound for scar thickness and Cutometer for skin elasticity and pliability.
Collapse
Affiliation(s)
- Kwang Chear Lee
- The Healing Foundation Burn Research Centre, University Hospital Birmingham Foundation Trust, Birmingham, B15 2TH UK
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT UK
| | - Janine Dretzke
- Public Health, Epidemiology and Biostatistics, Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT UK
| | - Liam Grover
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT UK
| | - Ann Logan
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT UK
| | - Naiem Moiemen
- The Healing Foundation Burn Research Centre, University Hospital Birmingham Foundation Trust, Birmingham, B15 2TH UK
| |
Collapse
|
4
|
Zhu XQ, Xu YH, Liao CX, Liu WG, Cheng KK, Chen JX. Differentiating the extent of cartilage repair in rabbit ears using nonlinear optical microscopy. J Microsc 2015; 260:219-26. [PMID: 26366638 DOI: 10.1111/jmi.12288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 06/09/2015] [Indexed: 11/26/2022]
Abstract
Nonlinear optical microscopy (NLOM) was used as a noninvasive and label-free tool to detect and quantify the extent of the cartilage recovery. Two cartilage injury models were established in the outer ears of rabbits that created a different extent of cartilage recovery based on the presence or absence of the perichondrium. High-resolution NLOM images were used to measure cartilage repair, specifically through spectral analysis and image texture. In contrast to a wound lacking a perichondrium, wounds with intact perichondria demonstrated significantly larger TPEF signals from cells and matrix, coarser texture indicating the more deposition of type I collagen. Spectral analysis of cells and matrix can reveal the matrix properties and cell growth. In addition, texture analysis of NLOM images showed significant differences in the distribution of cells and matrix of repaired tissues with or without perichondrium. Specifically, the decay length of autocorrelation coefficient based on TPEF images is 11.2 ± 1.1 in Wound 2 (with perichondrium) and 7.5 ± 2.0 in Wound 1 (without perichondrium), indicating coarser image texture and faster growth of cells in repaired tissues with perichondrium (p < 0.05). Moreover, the decay length of autocorrelation coefficient based on collagen SHG images also showed significant difference between Wound 2 and 1 (16.2 ± 1.2 vs. 12.2 ± 2.1, p < 0.05), indicating coarser image texture and faster deposition of collagen in repaired tissues with perichondrium (Wound 2). These findings suggest that NLOM is an ideal tool for studying cartilage repair, with potential applications in clinical medicine. NLOM can capture macromolecular details and distinguish between different extents of cartilage repair without the need for labelling agents.
Collapse
Affiliation(s)
- X Q Zhu
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, P. R. China
| | - Y H Xu
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, P. R. China
| | - C X Liao
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, P. R. China
| | - W G Liu
- Department of Orthopedics, Affiliated Union Hospital of Fujian Medical University, Fuzhou, P. R. China
| | - K K Cheng
- Institute of Bioproduct Development & Department of Bioprocess Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| | - J X Chen
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, P. R. China
| |
Collapse
|
5
|
Zhang H, Liu X, Liu Y, Wu Y, Li H, Zhao C, Li H, Meng Q, Li W. Effect of hematoporphyrin monomethyl ether-sonodynamic therapy (HMME-SDT) on hypertrophic scarring. PLoS One 2014; 9:e86003. [PMID: 24465834 PMCID: PMC3897560 DOI: 10.1371/journal.pone.0086003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 12/03/2013] [Indexed: 11/26/2022] Open
Abstract
Objective The aim of the present study was to explore the potential for hematoporphyrin monomethyl ether-Sonodynamic Therapy (HMME-SDT) treatment of hypertrophic scars within rabbit ears. Methods 60 white rabbits were randomly divided into five groups: 1) untreated controls, 2) lesioned, 3) lesioned + HMME, 4) lesioned + US (Ultrasound), and 5) lesioned +HMME-SDT. After induction of a lesion upon the ears of the rabbits, hypertrophic scars were assessed at 14, 28, 42 and 56 days post-lesion +/− treatment. Assessments consisted of visual inspection in the change of the skin, scar formation pathological morphology by hematoxylin and eosin (HE) staining technique with optical microscopy, calculation of a hypertrophic index, fibroblastic density measures, and observation of collagen changes in the scar tissue by Van Gieson's (VG)Stain along with calculation of collagen area density. Results With continued HMME-SDT treatment there was a gradual improvement in all parameters over the duration of the experiment. The lesion-induced scars of rabbits receiving HMME-SDT treatment were soft, the size was reduced, hyperplasia was flat and the color pale. The fibroblasts and collagens were reduced and the collagens were light red, sparse and orderly. The hypertrophic index was reduced, since the fibroblastic density was lowered and collagen area density was decreased. Conclusion HMME is an effective sonosensitizer and the combination of HMME-SDT treatment can exert significant benefits in reducing the formation of hypertrophic scars.
Collapse
Affiliation(s)
- Hanjun Zhang
- Department of Orthopaedic Surgery, Harbin Medical University, Harbin, China
| | - Xing Liu
- Department of Orthopaedic Surgery, Harbin Medical University, Harbin, China
| | - Youbin Liu
- Department of Orthopaedic Surgery, Harbin Medical University, Harbin, China
| | - Yin Wu
- Department of Orthopaedic Surgery, Harbin Medical University, Harbin, China
| | - Hongxi Li
- Department of Orthopaedic Surgery, Harbin Medical University, Harbin, China
| | - Chengbin Zhao
- Department of Orthopaedic Surgery, Harbin Medical University, Harbin, China
- * E-mail: (CbZ); (QgM); (WL)
| | - Huazhe Li
- Department of Orthopaedic Surgery, Harbin Medical University, Harbin, China
| | - Qinggang Meng
- Department of Orthopaedic Surgery, The First Hospital of Harbin City, Harbin, China
- * E-mail: (CbZ); (QgM); (WL)
| | - Wei Li
- Department of Orthopaedic Surgery, Harbin Medical University, Harbin, China
- * E-mail: (CbZ); (QgM); (WL)
| |
Collapse
|