1
|
Barbosa JMG, Filho NRA. The human volatilome meets cancer diagnostics: past, present, and future of noninvasive applications. Metabolomics 2024; 20:113. [PMID: 39375265 DOI: 10.1007/s11306-024-02180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/22/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Cancer is a significant public health problem, causing dozens of millions of deaths annually. New cancer screening programs are urgently needed for early cancer detection, as this approach can improve treatment outcomes and increase patient survival. The search for affordable, noninvasive, and highly accurate cancer detection methods revealed a valuable source of tumor-derived metabolites in the human metabolome through the exploration of volatile organic compounds (VOCs) in noninvasive biofluids. AIM OF REVIEW This review discusses volatilomics-based approaches for cancer detection using noninvasive biomatrices (breath, saliva, skin secretions, urine, feces, and earwax). We presented the historical background, the latest approaches, and the required stages for clinical validation of volatilomics-based methods, which are still lacking in terms of making noninvasive methods available and widespread to the population. Furthermore, insights into the usefulness and challenges of volatilomics in clinical implementation steps for each biofluid are highlighted. KEY SCIENTIFIC CONCEPTS OF REVIEW We outline the methodologies for using noninvasive biomatrices with up-and-coming clinical applications in cancer diagnostics. Several challenges and advantages associated with the use of each biomatrix are discussed, aiming at encouraging the scientific community to strengthen efforts toward the necessary steps to speed up the clinical translation of volatile-based cancer detection methods, as well as discussing in favor of (i) hybrid applications (i.e., using more than one biomatrix) to describe metabolite modulations that can be "cancer volatile fingerprints" and (ii) in multi-omics approaches integrating genomics, transcriptomics, and proteomics into the volatilomic data, which might be a breakthrough for diagnostic purposes, onco-pathway assessment, and biomarker validations.
Collapse
Affiliation(s)
- João Marcos G Barbosa
- Laboratório de Métodos de Extração E Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil.
| | - Nelson R Antoniosi Filho
- Laboratório de Métodos de Extração E Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
2
|
Heers H, Gut JM, Hofmann R, Flegar L, Derigs M, Huber J, Baumbach JI, Koczulla AR, Boeselt T. Pilot study for bladder cancer detection with volatile organic compounds using ion mobility spectrometry: a novel urine-based approach. World J Urol 2024; 42:353. [PMID: 38795133 PMCID: PMC11127872 DOI: 10.1007/s00345-024-05047-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/06/2024] [Indexed: 05/27/2024] Open
Abstract
PURPOSE Despite many efforts, no reliable urinary marker system has so far shown the potential to substitute cystoscopy. Measuring volatile organic compounds (VOCs) from urine is a promising alternative. VOCs are metabolic products which can be measured from the headspace of urine samples. Previous studies confirmed that the urine of bladder tumor patients has a different VOC profile than healthy controls. In this pilot study, the feasibility of discriminating VOCs from urine of bladder cancer patients from that of healthy control subjects was investigated. Aim of this study was to investigate whether VOC-based diagnosis of bladder cancer from urine samples is feasible using multicapillary column ion mobility spectrometry (MCC/IMS) and to identify potential molecular correlates to the relevant analytes. METHODS Headspace measurements of urine samples of 30 patients with confirmed transitional cell carcinoma (TCC) and 30 healthy controls were performed using MCC/IMS. In the results of the measurements, peaks showing significant differences between both groups were identified and implemented into a decision tree with respect to achieve group separation. Molecular correlates were predicted using a pre-defined dataset. RESULTS Eight peaks with significantly differing intensity were identified, 5 of which were highly significant. Using a six-step decision tree, MCC/IMS showed a sensitivity of 90% and specificity of 100% in group separation. CONCLUSION VOC-based detection of bladder cancer is feasible. MCC/IMS is a suitable method for urine-based diagnosis and should be further validated. The molecular characteristics and metabolic background of the analytes require further workup.
Collapse
Affiliation(s)
- Hendrik Heers
- Department of Urology, Philipps-Universität Marburg, Baldingerstraße, 35033, Marburg, Germany.
| | - Josef Maximilian Gut
- Department of Urology, Philipps-Universität Marburg, Baldingerstraße, 35033, Marburg, Germany
- Department of General and Visceral Surgery, München Klinik Neuperlach, Oskar-Maria-Graf-Ring 51, 81737, Munich, Germany
| | - Rainer Hofmann
- Department of Urology, Philipps-Universität Marburg, Baldingerstraße, 35033, Marburg, Germany
| | - Luka Flegar
- Department of Urology, Philipps-Universität Marburg, Baldingerstraße, 35033, Marburg, Germany
| | - Marcus Derigs
- Department of Urology, Philipps-Universität Marburg, Baldingerstraße, 35033, Marburg, Germany
| | - Johannes Huber
- Department of Urology, Philipps-Universität Marburg, Baldingerstraße, 35033, Marburg, Germany
| | - Joerg Ingo Baumbach
- Department Bio- and Chemical Engineering, Technical University Dortmund, Emil-Figge-Straße 66, 44227, Dortmund, Germany
| | - Andreas Rembert Koczulla
- Department of Pulmonology, Philipps-Universität Marburg, Baldingerstraße, 35033, Marburg, Germany
- Department of Pulmonology, Schön-Klinik Berchtesgadener Land, Malterhöh 1, 83471, Schönau, Germany
| | - Tobias Boeselt
- Department of Pulmonology, Philipps-Universität Marburg, Baldingerstraße, 35033, Marburg, Germany
| |
Collapse
|
3
|
Zhou M, Wang Q, Lu X, Zhang P, Yang R, Chen Y, Xia J, Chen D. Exhaled breath and urinary volatile organic compounds (VOCs) for cancer diagnoses, and microbial-related VOC metabolic pathway analysis: a systematic review and meta-analysis. Int J Surg 2024; 110:1755-1769. [PMID: 38484261 PMCID: PMC10942174 DOI: 10.1097/js9.0000000000000999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/04/2023] [Indexed: 03/17/2024]
Abstract
BACKGROUND The gradual evolution of the detection and quantification of volatile organic compounds (VOCs) has been instrumental in cancer diagnosis. The primary objective of this study was to assess the diagnostic potential of exhaled breath and urinary VOCs in cancer detection. As VOCs are indicative of tumor and human metabolism, our work also sought to investigate the metabolic pathways linked to the development of cancerous tumors. MATERIALS AND METHODS An electronic search was performed in the PubMed database. Original studies on VOCs within exhaled breath and urine for cancer detection with a control group were included. A meta-analysis was conducted using a bivariate model to assess the sensitivity and specificity of the VOCs for cancer detection. Fagan's nomogram was designed to leverage the findings from our diagnostic analysis for the purpose of estimating the likelihood of cancer in patients. Ultimately, MetOrigin was employed to conduct an analysis of the metabolic pathways associated with VOCs in relation to both human and/or microbiota. RESULTS The pooled sensitivity, specificity and the area under the curve for cancer screening utilizing exhaled breath and urinary VOCs were determined to be 0.89, 0.88, and 0.95, respectively. A pretest probability of 51% can be considered as the threshold for diagnosing cancers with VOCs. As the estimated pretest probability of cancer exceeds 51%, it becomes more appropriate to emphasize the 'ruling in' approach. Conversely, when the estimated pretest probability of cancer falls below 51%, it is more suitable to emphasize the 'ruling out' approach. A total of 14, 14, 6, and 7 microbiota-related VOCs were identified in relation to lung, colorectal, breast, and liver cancers, respectively. The enrichment analysis of volatile metabolites revealed a significant enrichment of butanoate metabolism in the aforementioned tumor types. CONCLUSIONS The analysis of exhaled breath and urinary VOCs showed promise for cancer screening. In addition, the enrichment analysis of volatile metabolites revealed a significant enrichment of butanoate metabolism in four tumor types, namely lung, colorectum, breast and liver. These findings hold significant implications for the prospective clinical application of multiomics correlation in disease management and the exploration of potential therapeutic targets.
Collapse
Affiliation(s)
- Min Zhou
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi Maternity and Child Health Care Hospital
| | - Qinghua Wang
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University
| | - Xinyi Lu
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi Maternity and Child Health Care Hospital
| | - Ping Zhang
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi Maternity and Child Health Care Hospital
| | - Rui Yang
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University
| | - Yu Chen
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University
| | - Jiazeng Xia
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Jiangnan University Medical Center, Wuxi, People’s Republic of China
| | - Daozhen Chen
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi Maternity and Child Health Care Hospital
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University
| |
Collapse
|
4
|
Carapito Â, Roque ACA, Carvalho F, Pinto J, Guedes de Pinho P. Exploiting volatile fingerprints for bladder cancer diagnosis: A scoping review of metabolomics and sensor-based approaches. Talanta 2024; 268:125296. [PMID: 37839328 DOI: 10.1016/j.talanta.2023.125296] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/26/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Bladder cancer (BC) represents a significant global health concern, for which early detection is essential to improve patient outcomes. This review evaluates the potential of the urinary volatile organic compounds (VOCs) as biomarkers for detecting and staging BC. The methods used include gas chromatography-mass spectrometry (GC-MS)-based metabolomics and electronic-nose (e-nose) sensors. The GC-MS studies that have been published reveal diverse results in terms of diagnostic performance. The sensitivities range from 27 % to an impressive 97 %, while specificities vary between 43 % and 94 %. Furthermore, the accuracies reported in these studies range from 80 to 89 %. In the urine of BC patients, a total of 80 VOCs were discovered to be significantly altered when compared to controls. These VOCs encompassed a variety of chemical classes such as alcohols, aldehydes, alkanes, aromatic compounds, fatty acids, ketones, and terpenoids, among others. Conversely, e-nose-based studies displayed sensitivities from 60 to 100 %, specificities from 53 to 96 %, and accuracies from 65 to 97 %. Interestingly, conductive polymer-based sensors performed better, followed by metal oxide semiconductor and optical sensors. GC-MS studies have shown improved performance in detecting early stages and low-grade tumors, providing valuable insights into staging. Based on these findings, VOC-based diagnostic tools hold great promise for early BC detection and staging. Further studies are needed to validate biomarkers and their classification performance. In the future, advancements in VOC profiling technologies may significantly contribute to improving the overall survival and quality of life for BC patients.
Collapse
Affiliation(s)
- Ângela Carapito
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Lab. of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - Ana Cecília A Roque
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Lab. of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Joana Pinto
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Lab. of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Lab. of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
5
|
Moghtaderi S, Mandapati A, Davies G, Wahid KA, Lukong KE. Smart and low-cost fluorometer for identifying breast cancer malignancy based on lipid droplets accumulation. PLoS One 2023; 18:e0294988. [PMID: 38128020 PMCID: PMC10735024 DOI: 10.1371/journal.pone.0294988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
The most common cause of breast cancer-related death is tumor recurrence. To develop more effective treatments, the identification of cancer cell specific malignancy indicators is therefore critical. Lipid droplets are known as an emerging hallmark in aggressive breast tumors. A common technique that can be used for observing molecules in cancer microenvironment is fluorescence microscopy. We describe the design, development and applicability of a smart fluorometer to detect lipid droplet accumulation based on the emitted fluorescence signals from highly malignant (MDA-MB-231) and mildly malignant (MCF7) breast cancer cell lines, that are stained with BODIPY dye. This device uses a visible-range light source as an excitation source and a spectral sensor as the detector. A commercial imaging system was used to examine the fluorescent cancer cell lines before being validated in a preclinical setting with the developed prototype. The outcomes indicate that this low-cost fluorometer can effectively detect the alterations levels of lipid droplets and hence distinguish between "moderately malignant" and "highly malignant" cancer cells. In comparison to prior research that used fluorescence spectroscopy techniques to detect cancer biomarkers, this study revealed enhanced capability in classifying mildly and highly malignant cancer cell lines.
Collapse
Affiliation(s)
- Shiva Moghtaderi
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Aditya Mandapati
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Gerald Davies
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Khan A. Wahid
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kiven Erique Lukong
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
6
|
“Seeing” invisible volatile organic compound (VOC) marker of urinary bladder cancer: A development from bench to bedside prototype spectroscopic device. Biosens Bioelectron 2022; 218:114764. [DOI: 10.1016/j.bios.2022.114764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 09/25/2022] [Indexed: 11/30/2022]
|
7
|
Jian Y, Zhang N, Liu T, Zhu Y, Wang D, Dong H, Guo L, Qu D, Jiang X, Du T, Zheng Y, Yuan M, Fu X, Liu J, Dou W, Niu F, Ning R, Zhang G, Fan J, Haick H, Wu W. Artificially Intelligent Olfaction for Fast and Noninvasive Diagnosis of Bladder Cancer from Urine. ACS Sens 2022; 7:1720-1731. [PMID: 35613367 DOI: 10.1021/acssensors.2c00467] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Globally, bladder cancer (BLC) is one of the most common cancers and has a high recurrence and mortality rate. Current clinical diagnostic approaches are either invasive or inaccurate. Here, we report on a cost-efficient, artificially intelligent chemiresistive sensor array made of polyaniline (PANI) derivatives that can noninvasively diagnose BLC at an early stage and maintain postoperative surveillance through ″smelling″ clinical urine samples at room temperature. In clinical trials, 18 healthy controls and 76 BLC patients (60 and 16 at early and advanced stages, respectively) are assessed by the artificial olfactory system. With the assistance of a support vector machine (SVM), very high sensitivity and accuracy from healthy controls are achieved, exceeding those obtained by the current techniques in practice. In addition, the recurrences of both early and advanced stages are diagnosed well, with the effect of confounding factors on the performance of the artificial olfactory system found to have a negligible influence on the diagnostic performance. Overall, this study contributes a novel, noninvasive, easy-to-use, inexpensive, real-time, accurate method for urine disease diagnosis, which can be useful for personalized care/diagnosis and postoperative surveillance, resulting in saving more lives.
Collapse
Affiliation(s)
- Yingying Jian
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Xi’an 710126, China
| | - Nan Zhang
- Department of Urology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Taoping Liu
- Interdisciplinary Research Center of Smart Sensors, Academy of Advanced Interdisciplinary Research, Xidian University, Xi’an 710126, China
| | - Yujin Zhu
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Xi’an 710126, China
| | - Di Wang
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou 311100, China
| | - Hao Dong
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou 311100, China
| | - Lihao Guo
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Xi’an 710126, China
| | - Danyao Qu
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Xi’an 710126, China
| | - Xue Jiang
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Xi’an 710126, China
| | - Tao Du
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Xi’an 710126, China
| | - Youbin Zheng
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Miaomiao Yuan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Xuemei Fu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Jinmei Liu
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Xi’an 710126, China
| | - Wei Dou
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Fang Niu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ruizhi Ning
- Interdisciplinary Research Center of Smart Sensors, Academy of Advanced Interdisciplinary Research, Xidian University, Xi’an 710126, China
| | - Guangjian Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Jinhai Fan
- Department of Urology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Weiwei Wu
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Xi’an 710126, China
- Interdisciplinary Research Center of Smart Sensors, Academy of Advanced Interdisciplinary Research, Xidian University, Xi’an 710126, China
| |
Collapse
|
8
|
Gouzerh F, Bessière JM, Ujvari B, Thomas F, Dujon AM, Dormont L. Odors and cancer: Current status and future directions. Biochim Biophys Acta Rev Cancer 2021; 1877:188644. [PMID: 34737023 DOI: 10.1016/j.bbcan.2021.188644] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023]
Abstract
Cancer is the second leading cause of death in the world. Because tumors detected at early stages are easier to treat, the search for biomarkers-especially non-invasive ones-that allow early detection of malignancies remains a central goal to reduce cancer mortality. Cancer, like other pathologies, often alters body odors, and much has been done by scientists over the last few decades to assess the value of volatile organic compounds (VOCs) as signatures of cancers. We present here a quantitative review of 208 studies carried out between 1984 and 2020 that explore VOCs as potential biomarkers of cancers. We analyzed the main findings of these studies, listing and classifying VOCs related to different cancer types while considering both sampling methods and analysis techniques. Considering this synthesis, we discuss several of the challenges and the most promising prospects of this research direction in the war against cancer.
Collapse
Affiliation(s)
- Flora Gouzerh
- CREEC/CANECEV (CREES), Montpellier, France; MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France; CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France.
| | - Jean-Marie Bessière
- Ecole Nationale de Chimie de Montpellier, Laboratoire de Chimie Appliquée, Montpellier, France
| | - Beata Ujvari
- Deakin University, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Frédéric Thomas
- CREEC/CANECEV (CREES), Montpellier, France; MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Antoine M Dujon
- CREEC/CANECEV (CREES), Montpellier, France; MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France; Deakin University, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Laurent Dormont
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| |
Collapse
|
9
|
Bowden AK, Durr NJ, Erickson D, Ozcan A, Ramanujam N, Jacques PV. Optical Technologies for Improving Healthcare in Low-Resource Settings: introduction to the feature issue. BIOMEDICAL OPTICS EXPRESS 2020; 11:3091-3094. [PMID: 32637243 PMCID: PMC7316015 DOI: 10.1364/boe.397698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Indexed: 05/03/2023]
Abstract
This feature issue of Biomedical Optics Express presents a cross-section of interesting and emerging work of relevance to optical technologies in low-resource settings. In particular, the technologies described here aim to address challenges to meeting healthcare needs in resource-constrained environments, including in rural and underserved areas. This collection of 18 papers includes papers on both optical system design and image analysis, with applications demonstrated for ex vivo and in vivo use. All together, these works portray the importance of global health research to the scientific community and the role that optics can play in addressing some of the world's most pressing healthcare challenges.
Collapse
Affiliation(s)
- Audrey K. Bowden
- Vanderbilt Biophotonics Center, Department of Biomedical Engineering, Vanderbilt University, 410 24th Avenue South, Nashville, TN 37232, USA
| | - Nicholas J. Durr
- Department of Biomedical Engineering, Johns Hopkins University (JHU), 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - David Erickson
- Cornell University, 9 Millcroft Way, Ithaca, NY 14850, USA
| | - Aydogan Ozcan
- Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles CA 90095, USA
| | - Nirmala Ramanujam
- Duke University, 101 Science Drive, 1427 FCIEMAS, Durham, NC 27708, USA
| | - Paulino Vacas Jacques
- Wellman Center for Photomedicine, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114, USA
| |
Collapse
|