1
|
Sun A, Li Y, Zhu P, He X, Jiang Z, Kong Y, Liu C, Wang S. Dual-view transport of intensity phase imaging flow cytometry. BIOMEDICAL OPTICS EXPRESS 2023; 14:5199-5207. [PMID: 37854577 PMCID: PMC10581798 DOI: 10.1364/boe.504863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 10/20/2023]
Abstract
In this work, we design multi-parameter phase imaging flow cytometry based on dual-view transport of intensity (MPFC), which integrates phase imaging and microfluidics to a microscope, to obtain single-shot quantitative phase imaging on cells flowing in the microfluidic channel. The MPFC system has been proven with simple configuration, accurate phase retrieval, high imaging contrast, and real-time imaging and has been successfully employed not only in imaging, recognizing, and analyzing the flowing cells even with high-flowing velocities but also in tracking cell motilities, including rotation and binary rotation. Current results suggest that our proposed MPFC provides an effective tool for imaging and analyzing cells in microfluidics and can be potentially used in both fundamental and clinical studies.
Collapse
Affiliation(s)
- Aihui Sun
- Department of Optoelectronic Information Science and Engineering, School of Science, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yaxi Li
- Radiology Department, Jiangnan University Medical Center, Wuxi, Jiangsu, 214122, China
| | - Pengfei Zhu
- Department of Optoelectronic Information Science and Engineering, School of Science, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiaoliang He
- Department of Optoelectronic Information Science and Engineering, School of Science, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhilong Jiang
- Department of Optoelectronic Information Science and Engineering, School of Science, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yan Kong
- Department of Optoelectronic Information Science and Engineering, School of Science, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Cheng Liu
- Department of Optoelectronic Information Science and Engineering, School of Science, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Shouyu Wang
- Jiangsu Province Engineering Research Center of Integrated Circuit Reliability Technology and Testing System & School of Electronics and Information Engineering, OptiX+ Laboratory, Wuxi University, Wuxi, Jiangsu 214105, China
- Single Molecule Nanometry Laboratory, China
| |
Collapse
|
2
|
Wang Z, Bianco V, Maffettone PL, Ferraro P. Holographic flow scanning cytometry overcomes depth of focus limits and smartly adapts to microfluidic speed. LAB ON A CHIP 2023; 23:2316-2326. [PMID: 37074006 DOI: 10.1039/d3lc00063j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Space-time digital holography (STDH) maps holograms in a hybrid space-time domain to achieve extended field of view, resolution enhanced, quantitative phase-contrast microscopy and velocimetry of flowing objects in a label-free modality. In STDH, area sensors can be replaced by compact and faster linear sensor arrays to augment the imaging throughput and to compress data from a microfluidic video sequence into one single hybrid hologram. However, in order to ensure proper imaging, the velocity of the objects in microfluidic channels has to be well-matched to the acquisition frame rate, which is the major constraint of the method. Also, imaging all the flowing samples in focus at the same time, while avoiding hydrodynamic focusing devices, is a highly desirable goal. Here we demonstrate a novel processing pipeline that addresses non-ideal flow conditions and is capable of returning the correct and extended focus phase contrast mapping of an entire microfluidic experiment in a single image. We apply this novel processing strategy to recover phase imaging of flowing HeLa cells in a lab-on-a-chip platform even when severely undersampled due to too fast flow while ensuring that all cells are in focus.
Collapse
Affiliation(s)
- Zhe Wang
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli "Federico II", P.le Tecchio 80, 80125, Napoli, Italy
- Institute of Applied Sciences and Intelligent Systems "E. Caianiello" (ISASI-CNR), via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| | - Vittorio Bianco
- Institute of Applied Sciences and Intelligent Systems "E. Caianiello" (ISASI-CNR), via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| | - Pier Luca Maffettone
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli "Federico II", P.le Tecchio 80, 80125, Napoli, Italy
- Institute of Applied Sciences and Intelligent Systems "E. Caianiello" (ISASI-CNR), via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| | - Pietro Ferraro
- Institute of Applied Sciences and Intelligent Systems "E. Caianiello" (ISASI-CNR), via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| |
Collapse
|
3
|
Gillette AA, Pham DL, Skala MC. Touch-free optical technologies to streamline the production of T cell therapies. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023; 25:100434. [PMID: 36642996 PMCID: PMC9837746 DOI: 10.1016/j.cobme.2022.100434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Currently approved adoptive T cell therapy relies on autologous (obtained from the same patient) T cells, which often suffer from poor quality that diminishes treatment efficacy. Due to the heterogeneous nature of T cell quality between and within patients, significant efforts are aimed at optimizing cell manipulation and growth conditions for potent T cell products. We believe that touch-free imaging and sensing technologies are critical to monitor single-cell features during T cell manufacturing to ensure consistent and optimally timed methods for cell manipulation and growth. Here, we discuss emerging label-free optical imaging and sensing methods, along with machine learning techniques that could enable in-line feedback to optimize T cell quality at multiple stages during manufacturing. These methods have the potential to streamline current workflow, accelerate the manufacture of safe high-quality T cell therapies, and improve our understanding of the dynamic, heterogeneous processes of T cell manufacturing.
Collapse
Affiliation(s)
| | - Dan L Pham
- Department of Biomedical Engineering, University of Wisconsin-Madison
| | - Melissa C Skala
- Morgridge Institute for Research, Madison, Wisconsin
- Department of Biomedical Engineering, University of Wisconsin-Madison
| |
Collapse
|
4
|
Hirotsu A, Kikuchi H, Yamada H, Ozaki Y, Haneda R, Kawata S, Murakami T, Matsumoto T, Hiramatsu Y, Kamiya K, Yamashita D, Fujimori Y, Ueda Y, Okazaki S, Kitagawa M, Konno H, Takeuchi H. Artificial intelligence-based classification of peripheral blood nucleated cells using label-free imaging flow cytometry. LAB ON A CHIP 2022; 22:3464-3474. [PMID: 35942978 DOI: 10.1039/d2lc00166g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Label-free image identification of circulating rare cells, such as circulating tumor cells within peripheral blood nucleated cells (PBNCs), the vast majority of which are white blood cells (WBCs), remains challenging. We previously described developing label-free image cytometry for classifying live cells using computer vision technology for pattern recognition, based on the subcellular structure of the quantitative phase microscopy images. We applied our image recognition methods to cells flowing in a flow cytometer microfluidic channel, and differentiated WBCs from cancer cell lines (area under receiver operating characteristic curve = 0.957). We then applied this method to healthy volunteers' and advanced cancer patients' blood samples and found that the non-WBC fraction rates (NWBC-FRs), defined as the percentage of cells classified as non-WBCs of the total PBNCs, were significantly higher in cancer patients than in healthy volunteers. Furthermore, we monitored NWBC-FRs over the therapeutic courses in cancer patients, which revealed the potential ability in monitoring the clinical status during therapy. Our image recognition system has the potential to provide a morphological diagnostic tool for circulating rare cells as non-WBC fractions.
Collapse
Affiliation(s)
- Amane Hirotsu
- Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | - Hirotoshi Kikuchi
- Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | - Hidenao Yamada
- Central Research Laboratory, Hamamatsu Photonics K.K, Hamamatsu, Shizuoka, Japan
| | - Yusuke Ozaki
- Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | - Ryoma Haneda
- Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | - Sanshiro Kawata
- Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | - Tomohiro Murakami
- Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | - Tomohiro Matsumoto
- Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | - Yoshihiro Hiramatsu
- Department Perioperative Functioning Care and Support, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Kinji Kamiya
- Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | - Daisuke Yamashita
- Central Research Laboratory, Hamamatsu Photonics K.K, Hamamatsu, Shizuoka, Japan
| | - Yuki Fujimori
- Central Research Laboratory, Hamamatsu Photonics K.K, Hamamatsu, Shizuoka, Japan
| | - Yukio Ueda
- Central Research Laboratory, Hamamatsu Photonics K.K, Hamamatsu, Shizuoka, Japan
| | - Shigetoshi Okazaki
- HAMAMATSU BioPhotonics Innovation Chair, Institute for Medical Photonics Research, Preeminent Medical Photonics Education and Research Centre, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Masatoshi Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
- Laboratory Animal Facilities and Services, Preeminent Medical Photonics Education and Research Centre, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Hiroyuki Konno
- Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Hiroya Takeuchi
- Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| |
Collapse
|
5
|
Běhal J, Borrelli F, Mugnano M, Bianco V, Capozzoli A, Curcio C, Liseno A, Miccio L, Memmolo P, Ferraro P. Developing a Reliable Holographic Flow Cyto-Tomography Apparatus by Optimizing the Experimental Layout and Computational Processing. Cells 2022; 11:2591. [PMID: 36010667 PMCID: PMC9406712 DOI: 10.3390/cells11162591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Digital Holographic Tomography (DHT) has recently been established as a means of retrieving the 3D refractive index mapping of single cells. To make DHT a viable system, it is necessary to develop a reliable and robust holographic apparatus in order that such technology can be utilized outside of specialized optics laboratories and operated in the in-flow modality. In this paper, we propose a quasi-common-path lateral-shearing holographic optical set-up to be used, for the first time, for DHT in a flow-cytometer modality. The proposed solution is able to withstand environmental vibrations that can severely affect the interference process. Furthermore, we have scaled down the system while ensuring that a full 360° rotation of the cells occurs in the field-of-view, in order to retrieve 3D phase-contrast tomograms of single cells flowing along a microfluidic channel. This was achieved by setting the camera sensor at 45° with respect to the microfluidic direction. Additional optimizations were made to the computational elements to ensure the reliable retrieval of 3D refractive index distributions by demonstrating an effective method of tomographic reconstruction, based on high-order total variation. The results were first demonstrated using realistic 3D numerical phantom cells to assess the performance of the proposed high-order total variation method in comparison with the gold-standard algorithm for tomographic reconstructions: namely, filtered back projection. Then, the proposed DHT system and the processing pipeline were experimentally validated for monocytes and mouse embryonic fibroblast NIH-3T3 cells lines. Moreover, the repeatability of these tomographic measurements was also investigated by recording the same cell multiple times and quantifying the ability to provide reliable and comparable tomographic reconstructions, as confirmed by a correlation coefficient greater than 95%. The reported results represent various steps forward in several key aspects of in-flow DHT, thus paving the way for its use in real-world applications.
Collapse
Affiliation(s)
- Jaromír Běhal
- Institute of Applied Sciences and Intelligent Systems, Italian National Research Council (CNR-ISASI), 80078 Pozzuoli, Italy
| | - Francesca Borrelli
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università di Napoli Federico II, 80125 Napoli, Italy
| | - Martina Mugnano
- Institute of Applied Sciences and Intelligent Systems, Italian National Research Council (CNR-ISASI), 80078 Pozzuoli, Italy
| | - Vittorio Bianco
- Institute of Applied Sciences and Intelligent Systems, Italian National Research Council (CNR-ISASI), 80078 Pozzuoli, Italy
| | - Amedeo Capozzoli
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università di Napoli Federico II, 80125 Napoli, Italy
| | - Claudio Curcio
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università di Napoli Federico II, 80125 Napoli, Italy
| | - Angelo Liseno
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università di Napoli Federico II, 80125 Napoli, Italy
| | - Lisa Miccio
- Institute of Applied Sciences and Intelligent Systems, Italian National Research Council (CNR-ISASI), 80078 Pozzuoli, Italy
| | - Pasquale Memmolo
- Institute of Applied Sciences and Intelligent Systems, Italian National Research Council (CNR-ISASI), 80078 Pozzuoli, Italy
| | - Pietro Ferraro
- Institute of Applied Sciences and Intelligent Systems, Italian National Research Council (CNR-ISASI), 80078 Pozzuoli, Italy
| |
Collapse
|
6
|
Song C, Chen Z, Zheng X, Yang S, Duan X, Jiang Y, Tu X, Gan J, Jiang S. Growth Characteristic Analysis of Haematococcus pluvialis in a Microfluidic Chip Using Digital in-Line Holographic Flow Cytometry. Anal Chem 2022; 94:5769-5775. [PMID: 35384647 DOI: 10.1021/acs.analchem.1c04732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In order to obtain high yield of astaxanthin, a high-value compound with ultrastrong antioxidant capacity, it is necessary to identify the growth characteristics (biomass, morphology, and size) of Haematococcus pluvialis. The current detection methods have the disadvantages of labor-consuming operation or complicated measurement system. It is an urgent need to explore a simple and cost-effective method for the detection of H. pluvialis with large size distribution during its growth period. In this work, a digital in-line holographic flow cytometry using a linear array sensor is proposed to measure the growth characteristics of H. pluvialis in a two-dimensional (2-D) hydrodynamic focusing microfluidic chip. Based on the modified angular spectrum method, the distorting holograms caused by the asynchrony of sample flow velocity and acquisition speed of the linear array sensor were rectified and reconstructed. In addition, the depth-of-focus of the imaging system were digitally extended to cover the entire depth of the microfluidic channel for optimized imaging quality. We have utilized the proposed method to statistically investigate the biomass, morphology and size of H. pluvialis under different culture conditions and growth durations.
Collapse
Affiliation(s)
- Chaolong Song
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
| | - Zhe Chen
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
| | - Xinqi Zheng
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
| | - Shimin Yang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xiudong Duan
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
| | - Yongguang Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xin Tu
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
| | - Jinqiang Gan
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
| | - Shulan Jiang
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
7
|
Verkhovskii RA, Kozlova AA, Sindeeva OA, Kozhevnikov IO, Prikhozhdenko ES, Mayorova OA, Grishin OV, Makarkin MA, Ermakov AV, Abdurashitov AS, Tuchin VV, Bratashov DN. Lightsheet-based flow cytometer for whole blood with the ability for the magnetic retrieval of objects from the blood flow. BIOMEDICAL OPTICS EXPRESS 2021; 12:380-394. [PMID: 33659080 PMCID: PMC7899519 DOI: 10.1364/boe.413845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/29/2020] [Accepted: 12/06/2020] [Indexed: 05/04/2023]
Abstract
Detection and extraction of circulating tumor cells and other rare objects in the bloodstream are of great interest for modern diagnostics, but devices that can solve this problem for the whole blood volume of laboratory animals are still rare. Here we have developed SPIM-based lightsheet flow cytometer for the detection of fluorescently-labeled objects in whole blood. The bypass channel between two blood vessels connected with the external flow cell was used to visualize, detect, and magnetically separate fluorescently-labeled objects without hydrodynamic focusing. Carriers for targeted drug delivery were used as model objects to test the device performance. They were injected into the bloodstream of the rat, detected fluorescently, and then captured from the bloodstream by a magnetic separator prior to filtration in organs. Carriers extracted from the whole blood were studied by a number of in vitro methods.
Collapse
Affiliation(s)
| | | | - Olga A. Sindeeva
- Saratov State University, 83 Astrakhanskaya str., Saratov 410012, Russia
- Skolkovo Innovation Center, 3 Nobel str., Moscow 121205, Russia
| | | | | | - Oksana A. Mayorova
- Saratov State University, 83 Astrakhanskaya str., Saratov 410012, Russia
| | - Oleg V. Grishin
- Saratov State University, 83 Astrakhanskaya str., Saratov 410012, Russia
| | | | - Alexey V. Ermakov
- Saratov State University, 83 Astrakhanskaya str., Saratov 410012, Russia
| | | | - Valery V. Tuchin
- Saratov State University, 83 Astrakhanskaya str., Saratov 410012, Russia
- National Research Tomsk State University, 36 Lenin Avenue, Tomsk 634050, Russia
- Institute of Precision Mechanics and Control of the RAS, 24 Rabochaya str., Saratov 410028, Russia
| | | |
Collapse
|