1
|
Böhm UL, Judkewitz B. Fast and light-efficient remote focusing for volumetric voltage imaging. Nat Commun 2024; 15:9555. [PMID: 39500891 PMCID: PMC11538346 DOI: 10.1038/s41467-024-53685-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
Voltage imaging holds great potential for biomedical research by enabling noninvasive recording of the electrical activity of excitable cells such as neurons or cardiomyocytes. Camera-based detection can record from hundreds of cells in parallel, but imaging entire volumes is limited by the need to focus through the sample at high speeds. Remote focusing techniques can remedy this drawback, but have so far been either too slow or light-inefficient. Here, we introduce flipped image remote focusing, a remote focusing method that doubles the light efficiency compared to conventional beamsplitter-based techniques and enables high-speed volumetric voltage imaging at 500 volumes/s. We show the potential of our approach by combining it with light sheet imaging in the zebrafish spinal cord to record from >100 spontaneously active neurons in parallel.
Collapse
Affiliation(s)
- Urs L Böhm
- Einstein Center for Neurosciences, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Benjamin Judkewitz
- Einstein Center for Neurosciences, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Hong W, Sparks H, Dunsby C. Alignment and characterization of remote-refocusing systems. APPLIED OPTICS 2023; 62:7431-7440. [PMID: 37855511 PMCID: PMC10575606 DOI: 10.1364/ao.500281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 10/20/2023]
Abstract
The technique of remote refocusing is used in optical microscopy to provide rapid axial scanning without mechanically perturbing the sample and in techniques such as oblique plane microscopy that build on remote refocusing to image a tilted plane within the sample. The magnification between the pupils of the primary (O1) and secondary (O2) microscope objectives of the remote-refocusing system has been shown previously by Mohanan and Corbett [J. Microsc.288, 95 (2022)JMICAR0022-272010.1111/jmi.12991] to be crucial in obtaining the broadest possible remote-refocusing range. In this work, we performed an initial alignment of a remote-refocusing system and then studied the effect of axial misalignments of O1 and O2, axial misalignment of the primary tube lens (TL1) relative to the secondary tube lens (TL2), lateral misalignments of TL2, and changes in the focal length of TL2. For each instance of the setup, we measured the mean point spread function F W H M xy of 100 nm fluorescent beads and the normalized bead integrated fluorescence signal, and we calculated the axial and lateral distortion of the system; all of these quantities were mapped over the remote-refocusing range and as a function of lateral image position. This allowed us to estimate the volume over which diffraction-limited performance is achieved and how this changes with the alignment of the system.
Collapse
Affiliation(s)
- Wenzhi Hong
- Photonics Group, Physics Department, Imperial College London, London, UK
| | - Hugh Sparks
- Photonics Group, Physics Department, Imperial College London, London, UK
| | - Chris Dunsby
- Photonics Group, Physics Department, Imperial College London, London, UK
| |
Collapse
|
3
|
Mohanan S, Corbett AD. Sensitivity of remote focusing microscopes to magnification mismatch. J Microsc 2022; 288:95-105. [PMID: 33295652 PMCID: PMC9786541 DOI: 10.1111/jmi.12991] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/23/2020] [Accepted: 12/03/2020] [Indexed: 12/30/2022]
Abstract
Remote focusing (RF) is a technique that greatly extends the aberration-free axial scan range of an optical microscope. To maximise the diffraction limited depth range in an RF system, the magnification of the relay lenses should be such that the pupil planes of the objectives are accurately mapped on to each other. In this paper we study the tolerance of the RF system to magnification mismatch and quantify the amount of residual spherical aberration present at different focusing depths. We observe that small deviations from ideal magnification results in increased amounts of residual spherical aberration terms leading to a reduction in the diffracted limited range. For high-numerical aperture objectives, the simulation predicts a 50% decrease in the diffracted limited range for 1% magnification mismatch. The simulation has been verified against an experimental RF system with ideal and nonideal magnifications. Experimentally confirmed predictions also provide a valuable empirical method of determining when a system is close to the ideal phase matching condition, based on the sign of the spherical aberration on either side of focus.
Collapse
Affiliation(s)
- Sharika Mohanan
- Department of Physics and AstronomyUniversity of ExeterExeterUK
| | | |
Collapse
|
4
|
Yang B, Lange M, Millett-Sikking A, Zhao X, Bragantini J, VijayKumar S, Kamb M, Gómez-Sjöberg R, Solak AC, Wang W, Kobayashi H, McCarroll MN, Whitehead LW, Fiolka RP, Kornberg TB, York AG, Royer LA. DaXi-high-resolution, large imaging volume and multi-view single-objective light-sheet microscopy. Nat Methods 2022; 19:461-469. [PMID: 35314838 PMCID: PMC9007742 DOI: 10.1038/s41592-022-01417-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 02/08/2022] [Indexed: 11/19/2022]
Abstract
The promise of single-objective light-sheet microscopy is to combine the convenience of standard single-objective microscopes with the speed, coverage, resolution and gentleness of light-sheet microscopes. We present DaXi, a single-objective light-sheet microscope design based on oblique plane illumination that achieves: (1) a wider field of view and high-resolution imaging via a custom remote focusing objective; (2) fast volumetric imaging over larger volumes without compromising image quality or necessitating tiled acquisition; (3) fuller image coverage for large samples via multi-view imaging and (4) higher throughput multi-well imaging via remote coverslip placement. Our instrument achieves a resolution of 450 nm laterally and 2 μm axially over an imaging volume of 3,000 × 800 × 300 μm. We demonstrate the speed, field of view, resolution and versatility of our instrument by imaging various systems, including Drosophila egg chamber development, zebrafish whole-brain activity and zebrafish embryonic development – up to nine embryos at a time. The DaXi single-objective light-sheet microscope achieves fast, high-quality imaging of large volumes. DaXi’s design allows increased scanning range without sacrificing imaging speed or quality, multiview imaging and versatile sample mounting.
Collapse
Affiliation(s)
- Bin Yang
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | | | | | - Xiang Zhao
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | | | - Mason Kamb
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | | | - Wanpeng Wang
- Cardiovascular Research Institute, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | | | - Matthew N McCarroll
- Department of Pharmaceutical Chemistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Lachlan W Whitehead
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Reto P Fiolka
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas B Kornberg
- Cardiovascular Research Institute, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Andrew G York
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | |
Collapse
|