1
|
Kim DG, Kim M, Goo JI, Kong J, Harmalkar DS, Lu Q, Sivaraman A, Nada H, Godesi S, Lee H, Song ME, Song E, Han KH, Kim W, Kim P, Choi WJ, Lee CH, Lee S, Choi Y, Kim S, Lee K. Chemical induction of the interaction between AIMP2-DX2 and Siah1 to enhance ubiquitination. Cell Chem Biol 2024:S2451-9456(24)00351-9. [PMID: 39260366 DOI: 10.1016/j.chembiol.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 12/27/2023] [Accepted: 08/08/2024] [Indexed: 09/13/2024]
Abstract
AIMP2-DX2 (hereafter DX2) is an oncogenic variant of aminoacyl-tRNA synthetase-interacting multifunctional protein 2 (AIMP2) that mediates tumorigenic interactions with various factors involved in cancer. Reducing the levels of DX2 can effectively inhibit tumorigenesis. We previously reported that DX2 can be degraded through Siah1-mediated ubiquitination. In this study, we identified a compound, SDL01, which enhanced the interaction between DX2 and Siah1, thereby facilitating the ubiquitin-dependent degradation of DX2. SDL01 was found to bind to the pocket surrounding the N-terminal flexible region and GST domain of DX2, causing a conformational change that stabilized its interaction with Siah1. Our findings demonstrate that protein-protein interactions (PPIs) can be modulated through chemically induced conformational changes.
Collapse
Affiliation(s)
- Dae Gyu Kim
- Medicinal Bioconvergence Research Center, Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy & College of Medicine, Gangnam Severance Hospital, Yonsei University, Incheon 21983, Republic of Korea; Department of Yuhan Biotechnology, School of Health & Wellness Services, Yuhan University, Bucheon 14780, Republic of Korea
| | - Minkyoung Kim
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Ja-Il Goo
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jiwon Kong
- Medicinal Bioconvergence Research Center, Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy & College of Medicine, Gangnam Severance Hospital, Yonsei University, Incheon 21983, Republic of Korea
| | - Dipesh S Harmalkar
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Qili Lu
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Aneesh Sivaraman
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hossam Nada
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | | | - Hwayoung Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Mo Eun Song
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Eunjoo Song
- IVIM Technology, Daejeon 34013, Republic of Korea
| | - Kang-Hyun Han
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Woojin Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Pilhan Kim
- IVIM Technology, Daejeon 34013, Republic of Korea; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Won Jun Choi
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Sunkyung Lee
- Drug Information Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Yongseok Choi
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy & College of Medicine, Gangnam Severance Hospital, Yonsei University, Incheon 21983, Republic of Korea.
| | - Kyeong Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea.
| |
Collapse
|
2
|
Eom M, Han S, Park P, Kim G, Cho ES, Sim J, Lee KH, Kim S, Tian H, Böhm UL, Lowet E, Tseng HA, Choi J, Lucia SE, Ryu SH, Rózsa M, Chang S, Kim P, Han X, Piatkevich KD, Choi M, Kim CH, Cohen AE, Chang JB, Yoon YG. Statistically unbiased prediction enables accurate denoising of voltage imaging data. Nat Methods 2023; 20:1581-1592. [PMID: 37723246 PMCID: PMC10555843 DOI: 10.1038/s41592-023-02005-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/10/2023] [Indexed: 09/20/2023]
Abstract
Here we report SUPPORT (statistically unbiased prediction utilizing spatiotemporal information in imaging data), a self-supervised learning method for removing Poisson-Gaussian noise in voltage imaging data. SUPPORT is based on the insight that a pixel value in voltage imaging data is highly dependent on its spatiotemporal neighboring pixels, even when its temporally adjacent frames alone do not provide useful information for statistical prediction. Such dependency is captured and used by a convolutional neural network with a spatiotemporal blind spot to accurately denoise voltage imaging data in which the existence of the action potential in a time frame cannot be inferred by the information in other frames. Through simulations and experiments, we show that SUPPORT enables precise denoising of voltage imaging data and other types of microscopy image while preserving the underlying dynamics within the scene.
Collapse
Affiliation(s)
- Minho Eom
- School of Electrical Engineering, KAIST, Daejeon, Republic of Korea
| | - Seungjae Han
- School of Electrical Engineering, KAIST, Daejeon, Republic of Korea
| | - Pojeong Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Gyuri Kim
- School of Electrical Engineering, KAIST, Daejeon, Republic of Korea
| | - Eun-Seo Cho
- School of Electrical Engineering, KAIST, Daejeon, Republic of Korea
| | - Jueun Sim
- Department of Materials Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Kang-Han Lee
- Department of Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Seonghoon Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - He Tian
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Urs L Böhm
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Einstein Center for Neurosciences, NeuroCure Cluster of Excellence, Charité University of Medicine Berlin, Berlin, Germany
| | - Eric Lowet
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Hua-An Tseng
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Jieun Choi
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
- KAIST Institute for Health Science and Technology, Daejeon, Republic of Korea
| | - Stephani Edwina Lucia
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
- KAIST Institute for Health Science and Technology, Daejeon, Republic of Korea
| | - Seung Hyun Ryu
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, Republic of Korea
| | - Márton Rózsa
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Sunghoe Chang
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Pilhan Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
- KAIST Institute for Health Science and Technology, Daejeon, Republic of Korea
- Graduate School of Nanoscience and Technology, KAIST, Daejeon, Republic of Korea
| | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Kiryl D Piatkevich
- Research Center for Industries of the Future and School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Myunghwan Choi
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Adam E Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Jae-Byum Chang
- Department of Materials Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Young-Gyu Yoon
- School of Electrical Engineering, KAIST, Daejeon, Republic of Korea.
- KAIST Institute for Health Science and Technology, Daejeon, Republic of Korea.
- Department of Semiconductor System Engineering, KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
3
|
Choi J, Choi MS, Jeon J, Moon J, Lee J, Kong E, Lucia SE, Hong S, Lee JH, Lee EY, Kim P. In vivo longitudinal 920 nm two-photon intravital kidney imaging of a dynamic 2,8-DHA crystal formation and tubular deterioration in the adenine-induced chronic kidney disease mouse model. BIOMEDICAL OPTICS EXPRESS 2023; 14:1647-1658. [PMID: 37078028 PMCID: PMC10110322 DOI: 10.1364/boe.485187] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Chronic kidney disease (CKD) is one of the most common renal diseases manifested by gradual loss of kidney function with no symptoms in the early stage. The underlying mechanism in the pathogenesis of CKD with various causes such as high blood pressure, diabetes, high cholesterol, and kidney infection is not well understood. In vivo longitudinal repetitive cellular-level observation of the kidney of the CKD animal model can provide novel insights to diagnose and treat the CKD by visualizing the dynamically changing pathophysiology of CKD with its progression over time. In this study, using two-photon intravital microscopy with a single 920 nm fixed-wavelength fs-pulsed laser, we longitudinally and repetitively observed the kidney of an adenine diet-induced CKD mouse model for 30 days. Interestingly, we could successfully visualize the 2,8-dihydroxyadenine (2,8-DHA) crystal formation with a second-harmonics generation (SHG) signal and the morphological deterioration of renal tubules with autofluorescence using a single 920 nm two-photon excitation. The longitudinal in vivo two-photon imaging results of increasing 2,8-DHA crystals and decreasing tubular area ratio visualized by SHG and autofluorescence signal, respectively, were highly correlated with the CKD progression monitored by a blood test showing increased cystatin C and blood urea nitrogen (BUN) levels over time. This result suggests the potential of label-free second-harmonics generation crystal imaging as a novel optical technique for in vivo CKD progression monitoring.
Collapse
Affiliation(s)
- Jieun Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Min-Sun Choi
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Jehwi Jeon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jieun Moon
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jingu Lee
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Eunji Kong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Stephani Edwina Lucia
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sujung Hong
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Ji-Hye Lee
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
| | - Eun Young Lee
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Pilhan Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
4
|
Jia H, Liu J, Fang T, Zhou Z, Li R, Yin W, Qian Y, Wang Q, Zhou W, Liu C, Sun D, Chen X, Ouyang Z, Dong J, Wang Y, Yue S. The role of altered lipid composition and distribution in liver fibrosis revealed by multimodal nonlinear optical microscopy. SCIENCE ADVANCES 2023; 9:eabq2937. [PMID: 36638165 PMCID: PMC9839333 DOI: 10.1126/sciadv.abq2937] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Intracellular lipid accumulation is commonly seen in fibrotic livers, but its exact role in liver fibrosis remains elusive. Here, we established a multimodal nonlinear optical microscopy to quantitatively map distribution of biomolecules in fibrotic livers. Our data revealed that unsaturated triglycerides were predominantly accumulated in central vein area during liver fibrosis but not in portal vein area. Moreover, the lipid homeostasis was remarkably dysregulated in the late-stage compared to the early-stage fibrosis, including increased unsaturated triglycerides with decreased lipid unsaturation degree and decreased membrane fluidity. Such alterations were likely due to up-regulated lipogenesis, desaturation, and peroxidation, which consequently led to endoplasmic reticulum stress and cell death. Inspiringly, injured hepatocyte could be rescued by remodeling lipid homeostasis via either supply of unsaturated fatty acids or enhancement of membrane fluidity. Collectively, our study improves current understanding of the role of lipid homeostasis in fibrosis and open opportunities for treatment.
Collapse
Affiliation(s)
- Hao Jia
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Juan Liu
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing, 102218, China
| | - Tinghe Fang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Zhen Zhou
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Ruihong Li
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing, 102218, China
| | - Wenzhen Yin
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Yao Qian
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Qi Wang
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing, 102218, China
| | - Wanhui Zhou
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Chang Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Dingcheng Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xun Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Jiahong Dong
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing, 102218, China
| | - Yunfang Wang
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing, 102218, China
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Shuhua Yue
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
5
|
Purevsuren K, Shibuta Y, Shiozaki S, Tsunoda M, Mizukami K, Tobita S, Yoshihara T. Blue-emitting lipid droplet probes based on coumarin dye for multi-color imaging of living cells and fatty livers of mice. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Pac J, Koo DJ, Cho H, Jung D, Choi MH, Choi Y, Kim B, Park JU, Kim SY, Lee Y. Three-dimensional imaging and analysis of pathological tissue samples with de novo generation of citrate-based fluorophores. SCIENCE ADVANCES 2022; 8:eadd9419. [PMID: 36383671 PMCID: PMC9668299 DOI: 10.1126/sciadv.add9419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Two-dimensional (2D) histopathology based on the observation of thin tissue slides is the current paradigm in diagnosis and prognosis. However, labeling strategies in conventional histopathology are limited in compatibility with 3D imaging combined with tissue clearing techniques. Here, we present a rapid and efficient volumetric imaging technique of pathological tissues called 3D tissue imaging through de novo formation of fluorophores, or 3DNFC, which is the integration of citrate-based fluorogenic reaction DNFC and tissue clearing techniques. 3DNFC markedly increases the fluorescence intensity of tissues by generating fluorophores on nonfluorescent amino-terminal cysteine and visualizes the 3D structure of the tissues to provide their anatomical morphology and volumetric information. Furthermore, the application of 3DNFC to pathological tissue achieves the 3D reconstruction for the unbiased analysis of diverse features of the disorders in their natural context. We suggest that 3DNFC is a promising volumetric imaging method for the prognosis and diagnosis of pathological tissues.
Collapse
Affiliation(s)
- Jinyoung Pac
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Dong-Jun Koo
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Hyeongjun Cho
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Dongwook Jung
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Min-ha Choi
- Department of Plastic and Reconstructive Surgery, Seoul National University Boramae Hospital, Seoul National University College of Medicine, 5 Gil 20, Boramae Road, Dongjak-Gu, Seoul 07061, South Korea
| | - Yunjung Choi
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Bohyun Kim
- Department of Pathology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, South Korea
| | - Ji-Ung Park
- Department of Plastic and Reconstructive Surgery, Seoul National University Boramae Hospital, Seoul National University College of Medicine, 5 Gil 20, Boramae Road, Dongjak-Gu, Seoul 07061, South Korea
| | - Sung-Yon Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Yan Lee
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
7
|
Lee CG, Lee SJ, Park S, Choi SE, Song MW, Lee HW, Kim HJ, Kang Y, Lee KW, Kim HM, Kwak JY, Lee IJ, Jeon JY. In Vivo Two-Photon Imaging Analysis of Dynamic Degradation of Hepatic Lipid Droplets in MS-275-Treated Mouse Liver. Int J Mol Sci 2022; 23:ijms23179978. [PMID: 36077368 PMCID: PMC9456374 DOI: 10.3390/ijms23179978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/03/2022] Open
Abstract
The accumulation of hepatic lipid droplets (LDs) is a hallmark of non-alcoholic fatty liver disease (NAFLD). Appropriate degradation of hepatic LDs and oxidation of complete free fatty acids (FFAs) are important for preventing the development of NAFLD. Histone deacetylase (HDAC) is involved in the impaired lipid metabolism seen in high-fat diet (HFD)-induced obese mice. Here, we evaluated the effect of MS-275, an inhibitor of HDAC1/3, on the degradation of hepatic LDs and FFA oxidation in HFD-induced NAFLD mice. To assess the dynamic degradation of hepatic LDs and FFA oxidation in fatty livers of MS-275-treated HFD C57BL/6J mice, an intravital two-photon imaging system was used and biochemical analysis was performed. The MS-275 improved hepatic metabolic alterations in HFD-induced fatty liver by increasing the dynamic degradation of hepatic LDs and the interaction between LDs and lysozyme in the fatty liver. Numerous peri-droplet mitochondria, lipolysis, and lipophagy were observed in the MS-275-treated mouse fatty liver. Biochemical analysis revealed that the lipolysis and autophagy pathways were activated in MS-275 treated mouse liver. In addition, MS-275 reduced the de novo lipogenesis, but increased the mitochondrial oxidation and the expression levels of oxidation-related genes, such as PPARa, MCAD, CPT1b, and FGF21. Taken together, these results suggest that MS-275 stimulates the degradation of hepatic LDs and mitochondrial free fatty acid oxidation, thus protecting against HFD-induced NAFLD.
Collapse
Affiliation(s)
- Chang-Gun Lee
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Gyeonggi-do, Korea
| | - Soo-Jin Lee
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon 16499, Gyeonggi-do, Korea
| | - Seokho Park
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Gyeonggi-do, Korea
- Department of Biomedical Science, The Graduate School, Ajou University, Suwon 16499, Gyeonggi-do, Korea
| | - Sung-E Choi
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Gyeonggi-do, Korea
| | - Min-Woo Song
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon 16499, Gyeonggi-do, Korea
| | - Hyo Won Lee
- Department of Energy Systems Research, Ajou University, Suwon 16499, Gyeonggi-do, Korea
- Department of Chemistry, Ajou University, Suwon 16499, Gyeonggi-do, Korea
| | - Hae Jin Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon 16499, Gyeonggi-do, Korea
| | - Yup Kang
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Gyeonggi-do, Korea
| | - Kwan Woo Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon 16499, Gyeonggi-do, Korea
| | - Hwan Myung Kim
- Department of Energy Systems Research, Ajou University, Suwon 16499, Gyeonggi-do, Korea
- Department of Chemistry, Ajou University, Suwon 16499, Gyeonggi-do, Korea
| | - Jong-Young Kwak
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon 16499, Gyeonggi-do, Korea
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Gyeonggi-do, Korea
- Correspondence: (J.-Y.K.); (J.Y.J.); Tel.: +82-31-219-4487 (J.-Y.K.); +82-31-219-7459 (J.Y.J.); Fax: +82-31-219-5069 (J.-Y.K.); +82-31-219-4497 (J.Y.J.)
| | - In-Jeong Lee
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon 16499, Gyeonggi-do, Korea
| | - Ja Young Jeon
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon 16499, Gyeonggi-do, Korea
- Correspondence: (J.-Y.K.); (J.Y.J.); Tel.: +82-31-219-4487 (J.-Y.K.); +82-31-219-7459 (J.Y.J.); Fax: +82-31-219-5069 (J.-Y.K.); +82-31-219-4497 (J.Y.J.)
| |
Collapse
|
8
|
Hong S, Lee J, Moon J, Kong E, Jeon J, Kim YS, Kim HR, Kim P. Intravital longitudinal cellular visualization of oral mucosa in a murine model based on rotatory side-view confocal endomicroscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:4160-4174. [PMID: 36032579 PMCID: PMC9408257 DOI: 10.1364/boe.462269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Oral mucosa is a soft tissue lining the inside of the mouth, protecting the oral cavity from microbiological insults. The mucosal immune system is composed of diverse types of cells that defend against a wide range of pathogens. The pathophysiology of various oral mucosal diseases has been studied mostly by ex vivo histological analysis of harvested specimens. However, to analyze dynamic cellular processes in the oral mucosa, longitudinal in vivo observation of the oral mucosa in a single mouse during pathogenesis is a highly desirable and efficient approach. Herein, by utilizing micro GRIN lens-based rotatory side-view confocal endomicroscopy, we demonstrated non-invasive longitudinal cellular-level in vivo imaging of the oral mucosa, visualizing fluorescently labeled cells including various immune cells, pericytes, nerve cells, and lymphatic and vascular endothelial cells. With rotational and sliding movement of the side-view endomicroscope on the oral mucosa, we successfully achieved a multi-color wide-area cellular-level visualization in a noninvasive manner. By using a transgenic mouse expressing photoconvertible protein, Kaede, we achieved longitudinal repetitive imaging of the same microscopic area in the buccal mucosa of a single mouse for up to 10 days. Finally, we performed longitudinal intravital visualization of the oral mucosa in a DNFB-derived oral contact allergy mouse model, which revealed highly dynamic spatiotemporal changes of CSF1R or LysM expressing immune cells such as monocytes, macrophages, and granulocytes in response to allergic challenge for one week. This technique can be a useful tool to investigate the complex pathophysiology of oral mucosal diseases.
Collapse
Affiliation(s)
- Sujung Hong
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jingu Lee
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jieun Moon
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Eunji Kong
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jehwi Jeon
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yeon soo Kim
- Department of Otorhinolaryngology, Konyang University College of Medicine, Konyang University Hospital, Daejeon, 35365, Republic of Korea
| | - Hyung-Ryong Kim
- Department of Pharmacology, College of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Pilhan Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
9
|
Mukherjee P, Fukuda S, Lukmanto D, Yamashita T, Okada K, Makita S, Abd El-Sadek I, Miyazawa A, Zhu L, Morishita R, Lichtenegger A, Oshika T, Yasuno Y. Label-free metabolic imaging of non-alcoholic-fatty-liver-disease (NAFLD) liver by volumetric dynamic optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2022; 13:4071-4086. [PMID: 35991915 PMCID: PMC9352293 DOI: 10.1364/boe.461433] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 05/30/2023]
Abstract
Label-free metabolic imaging of non-alcoholic fatty liver disease (NAFLD) mouse liver is demonstrated ex vivo by dynamic optical coherence tomography (OCT). The NAFLD mouse is a methionine choline-deficient (MCD)-diet model, and two mice fed the MCD diet for 1 and 2 weeks are involved in addition to a normal-diet mouse. The dynamic OCT is based on repeating raster scan and logarithmic intensity variance (LIV) analysis that enables volumetric metabolic imaging with a standard-speed (50,000 A-lines/s) OCT system. Metabolic domains associated with lipid droplet accumulation and inflammation are clearly visualized three-dimensionally. Particularly, the normal-diet liver exhibits highly metabolic vessel-like structures of peri-vascular hepatic zones. The 1-week MCD-diet liver shows ring-shaped highly metabolic structures formed with lipid droplets. The 2-week MCD-diet liver exhibits fragmented vessel-like structures associated with inflammation. These results imply that volumetric LIV imaging is useful for visualizing and assessing NAFLD abnormalities.
Collapse
Affiliation(s)
- Pradipta Mukherjee
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shinichi Fukuda
- Department of Ophthalmology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Advanced Vision Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Donny Lukmanto
- Department of Advanced Vision Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Toshiharu Yamashita
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kosuke Okada
- Division of Medical Sciences, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ibrahim Abd El-Sadek
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Physics, Faculty of Science, Damietta University, 34517 New Damietta City, Damietta, Egypt
| | | | - Lida Zhu
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Rion Morishita
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Antonia Lichtenegger
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Tetsuro Oshika
- Department of Ophthalmology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
10
|
Wang Y, Wang J. Intravital Imaging of Inflammatory Response in Liver Disease. Front Cell Dev Biol 2022; 10:922041. [PMID: 35837329 PMCID: PMC9274191 DOI: 10.3389/fcell.2022.922041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
The healthy liver requires a strictly controlled crosstalk between immune and nonimmune cells to maintain its function and homeostasis. A well-conditioned immune system can effectively recognize and clear noxious stimuli by a self-limited, small-scale inflammatory response. This regulated inflammatory process enables the liver to cope with daily microbial exposure and metabolic stress, which is beneficial for hepatic self-renewal and tissue remodeling. However, the failure to clear noxious stimuli or dysregulation of immune response can lead to uncontrolled liver inflammation, liver dysfunction, and severe liver disease. Numerous highly dynamic circulating immune cells and sessile resident immune and parenchymal cells interact and communicate with each other in an incredibly complex way to regulate the inflammatory response in both healthy and diseased liver. Intravital imaging is a powerful tool to visualize individual cells in vivo and has been widely used for dissecting the behavior and interactions between various cell types in the complex architecture of the liver. Here, we summarize some new findings obtained with the use of intravital imaging, which enhances our understanding of the complexity of immune cell behavior, cell–cell interaction, and spatial organization during the physiological and pathological liver inflammatory response.
Collapse
|
11
|
Hickey SM, Ung B, Bader C, Brooks R, Lazniewska J, Johnson IRD, Sorvina A, Logan J, Martini C, Moore CR, Karageorgos L, Sweetman MJ, Brooks DA. Fluorescence Microscopy-An Outline of Hardware, Biological Handling, and Fluorophore Considerations. Cells 2021; 11:35. [PMID: 35011596 PMCID: PMC8750338 DOI: 10.3390/cells11010035] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
Fluorescence microscopy has become a critical tool for researchers to understand biological processes at the cellular level. Micrographs from fixed and live-cell imaging procedures feature in a plethora of scientific articles for the field of cell biology, but the complexities of fluorescence microscopy as an imaging tool can sometimes be overlooked or misunderstood. This review seeks to cover the three fundamental considerations when designing fluorescence microscopy experiments: (1) hardware availability; (2) amenability of biological models to fluorescence microscopy; and (3) suitability of imaging agents for intended applications. This review will help equip the reader to make judicious decisions when designing fluorescence microscopy experiments that deliver high-resolution and informative images for cell biology.
Collapse
Affiliation(s)
- Shane M. Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (C.B.); (R.B.); (J.L.); (I.R.D.J.); (A.S.); (J.L.); (C.M.); (C.R.M.); (L.K.); (M.J.S.); (D.A.B.)
| | - Ben Ung
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (C.B.); (R.B.); (J.L.); (I.R.D.J.); (A.S.); (J.L.); (C.M.); (C.R.M.); (L.K.); (M.J.S.); (D.A.B.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Moon J, Jeon J, Kong E, Hong S, Lee J, Lee EK, Kim P. Intravital two-photon imaging and quantification of hepatic steatosis and fibrosis in a live small animal model. BIOMEDICAL OPTICS EXPRESS 2021; 12:7918-7927. [PMID: 35003876 PMCID: PMC8713697 DOI: 10.1364/boe.442608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/24/2021] [Accepted: 11/16/2021] [Indexed: 05/02/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases closely associated with the metabolic system, including obesity and type 2 diabetes. The progression of NAFLD with advanced fibrosis is associated with an increased risk of liver cirrhosis and cancer as well as various extra-hepatic diseases. Yet, the underlying mechanism is not fully understood partly due to the absence of effective high-resolution in vivo imaging methods and the appropriate animal models recapitulating the pathology of NAFLD. To improve our understanding about complex pathophysiology of NAFLD, the need for an advanced imaging methodology to visualize and quantify subcellular-level features of NAFLD in vivo over time is ever-increasing. In this study, we established an advanced in vivo two-photon imaging technique to visualize and quantify subcellular-level pathological features of NAFLD in a live mouse animal developing hepatic steatosis, fibrosis, and disrupted microvasculature.
Collapse
Affiliation(s)
- Jieun Moon
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jehwi Jeon
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Eunji Kong
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sujung Hong
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jingu Lee
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Eun Kyung Lee
- Department of Internal Medicine, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Pilhan Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
13
|
Moon J, Kim P. Intravital Two-photon Imaging of Dynamic Alteration of Hepatic Lipid Droplets in Fasted and Refed State. J Lipid Atheroscler 2021; 10:313-321. [PMID: 34621702 PMCID: PMC8473963 DOI: 10.12997/jla.2021.10.3.313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022] Open
Abstract
Objective The liver plays a central role in lipid metabolism. During fasting and feeding, the fatty acid trafficking between adipose tissue and liver induces accumulation and dissociation of dynamic hepatic lipid droplets (LDs). Herein, we established an intravital 2-photon imaging technique to longitudinally visualize the dynamic in vivo alteration of hepatic LD deposition during fasting and refeeding in the liver of live mouse. Methods Intravital 2-photon imaging of liver was performed to observe hepatic LD alteration induced by fasting for different periods of time, 12, 24, and 48 hours followed by refeeding. Hepatic LDs were fluorescently labelled in vivo by intravenous injection of Seoul-Flour 44 and visualized by custom-built intravital 2-photon microscope. Results Significant increases of the number and size of hepatic LDs were observed by intravital 2-photon imaging of the liver after 12 hours of fasting. The degree of hepatic LD accumulation continuously increased with fasting up to 48 hours. Remarkably, with refeeding for 24 hours, the hepatic LDs accumulated by fasting were fully dissociated and the LD occupancy in the liver was recovered to the normal state. Conclusion Utilizing intravital 2-photon microscope with in vivo systemic fluorescent labeling of LD in live mice, dynamic alterations of hepatic LDs such as accumulation and dissociation by fasting and refeeding were successfully visualized at a subcellular level in vivo. The established method enabling the in vivo visualization of LDs will be a useful tool to investigate the pathophysiology of various diseases associated with dysregulated lipid metabolism.
Collapse
Affiliation(s)
- Jieun Moon
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.,KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Pilhan Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.,KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|
14
|
Inositol hexanicotinate self-micelle solid dispersion is an efficient drug delivery system in the mouse model of non-alcoholic fatty liver disease. Int J Pharm 2021; 602:120576. [PMID: 33839223 DOI: 10.1016/j.ijpharm.2021.120576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/24/2021] [Accepted: 04/03/2021] [Indexed: 12/12/2022]
Abstract
Inositol hexanicotinate (IHN) self-micelle solid dispersion (SD) with glycyrrhizic acid (GA) and arabic gum (AG) was prepared by mechanical ball milling process to improve the solubility, stability of amorphous state, and bioavailability of IHN, which enhanced the treatment of IHN on hyperlipidemia and nonalcoholic fatty liver disease (NAFLD). The physicochemical properties of IHN/GA/AG SDs in solid state were characterized by differential scanning calorimetry, X-ray diffraction studies, and scanning electron microscopy. The characteristics of the sample solutions were analyzed by reverse-phase HPLC, particle characterization, critical micelle concentration, and transmission electron microscopy. Further pharmacokinetic study of this SD formulation in rats showed a significant 3.3-fold increase in bioavailability compared to pure IHN. Moreover, biomarkers in serum and liver of NAFLD mice were significantly ameliorated after oral administration of IHN/GA/AG SDs for 15 days. Altogether, these results establish the mechanochemically prepared IHN/GA/AG SDs as an efficacious formulation for the treatment of hyperlipidemia and NAFLD.
Collapse
|
15
|
Surlin P, Didilescu AC, Lazar L, Arsenie CC, Camen A, Popescu DM, Gheorghe DN, Osiac E, Rogoveanu I. Evaluation Through the Optical Coherence Tomography Analysis of the Influence of Non-Alcoholic Fatty Liver Disease on the Gingival Inflammation in Periodontal Patients. Diabetes Metab Syndr Obes 2021; 14:2935-2942. [PMID: 34234491 PMCID: PMC8254560 DOI: 10.2147/dmso.s310314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/13/2021] [Indexed: 01/23/2023] Open
Abstract
PURPOSE The purpose of this ex vivo study is to exhibit the inflammatory changes that occur within the gingival tissue by using optical coherence tomography (OCT) in periodontal patients with non-alcoholic fatty liver disease (NAFLD) and if NAFLD could influence the local periodontal inflammation. PATIENTS AND METHODS Gingival tissue samples obtained from patients were divided into three groups - P (periodontitis), NAFLD+P (NAFLD+periodontitis) and H (healthy) groups - and were scanned using an OCT light beam, in order to perform a qualitative and quantitative analysis of images. The value of average pixel density has been associated with the degree of inflammation. RESULTS The highest average pixel density was found in patients from the H group, while the lowest value of average pixel density was recorded in gingival tissue samples collected from patients with NAFLD+P. The image assessments from NAFLD+P group delivered lower values of average pixel density than those of P group, suggesting a possible influence of this disease on the inflammatory tissular changes produced by periodontal disease. CONCLUSION After comparing the OCT analysis results obtained for the three groups of patients, we can consider that NAFLD may be an aggravating factor for the inflammation of periodontal disease.
Collapse
Affiliation(s)
- Petra Surlin
- Department of Periodontology, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Andreea Cristiana Didilescu
- Department of Embryology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Luminita Lazar
- George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureş, Targu-Mures, Romania
| | - Cristian Cosmin Arsenie
- Doctoral School, University of Medicine and Pharmacy of Craiova, Craiova, Romania
- Correspondence: Cristian Cosmin Arsenie Doctoral School, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş St., Craiova, 200349, RomaniaTel +40 351 443 557 Email
| | - Adrian Camen
- Department of Oral Surgery, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Dora Maria Popescu
- Department of Periodontology, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, Craiova, Romania
- Dora Maria Popescu Department of Periodontology, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş St., Craiova, 200349, RomaniaTel +40 351 443 557 Email
| | - Dorin Nicolae Gheorghe
- Department of Periodontology, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Eugen Osiac
- Department of Biophysics, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Ion Rogoveanu
- Department of Gastroenterology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|