1
|
Li F, Wang D, Yang Z, Zhang Y, Jiang J, Liu X, Kong K, Zhou F, Tham CC, Medeiros F, Han Y, Grzybowski A, Zangwill LM, Lam DSC, Zhang X. The AI revolution in glaucoma: Bridging challenges with opportunities. Prog Retin Eye Res 2024; 103:101291. [PMID: 39186968 DOI: 10.1016/j.preteyeres.2024.101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Recent advancements in artificial intelligence (AI) herald transformative potentials for reshaping glaucoma clinical management, improving screening efficacy, sharpening diagnosis precision, and refining the detection of disease progression. However, incorporating AI into healthcare usages faces significant hurdles in terms of developing algorithms and putting them into practice. When creating algorithms, issues arise due to the intensive effort required to label data, inconsistent diagnostic standards, and a lack of thorough testing, which often limits the algorithms' widespread applicability. Additionally, the "black box" nature of AI algorithms may cause doctors to be wary or skeptical. When it comes to using these tools, challenges include dealing with lower-quality images in real situations and the systems' limited ability to work well with diverse ethnic groups and different diagnostic equipment. Looking ahead, new developments aim to protect data privacy through federated learning paradigms, improving algorithm generalizability by diversifying input data modalities, and augmenting datasets with synthetic imagery. The integration of smartphones appears promising for using AI algorithms in both clinical and non-clinical settings. Furthermore, bringing in large language models (LLMs) to act as interactive tool in medicine may signify a significant change in how healthcare will be delivered in the future. By navigating through these challenges and leveraging on these as opportunities, the field of glaucoma AI will not only have improved algorithmic accuracy and optimized data integration but also a paradigmatic shift towards enhanced clinical acceptance and a transformative improvement in glaucoma care.
Collapse
Affiliation(s)
- Fei Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| | - Deming Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| | - Zefeng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| | - Yinhang Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| | - Jiaxuan Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| | - Xiaoyi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| | - Kangjie Kong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| | - Fengqi Zhou
- Ophthalmology, Mayo Clinic Health System, Eau Claire, WI, USA.
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Felipe Medeiros
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Ying Han
- University of California, San Francisco, Department of Ophthalmology, San Francisco, CA, USA; The Francis I. Proctor Foundation for Research in Ophthalmology, University of California, San Francisco, CA, USA.
| | - Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Poznan, Poland.
| | - Linda M Zangwill
- Hamilton Glaucoma Center, Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, CA, USA.
| | - Dennis S C Lam
- The International Eye Research Institute of the Chinese University of Hong Kong (Shenzhen), Shenzhen, China; The C-MER Dennis Lam & Partners Eye Center, C-MER International Eye Care Group, Hong Kong, China.
| | - Xiulan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| |
Collapse
|
2
|
Braeu FA, Chuangsuwanich T, Tun TA, Perera S, Husain R, Thiery AH, Aung T, Barbastathis G, Girard MJA. AI-based clinical assessment of optic nerve head robustness superseding biomechanical testing. Br J Ophthalmol 2024; 108:223-231. [PMID: 36627175 DOI: 10.1136/bjo-2022-322374] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND/AIMS To use artificial intelligence (AI) to: (1) exploit biomechanical knowledge of the optic nerve head (ONH) from a relatively large population; (2) assess ONH robustness (ie, sensitivity of the ONH to changes in intraocular pressure (IOP)) from a single optical coherence tomography (OCT) volume scan of the ONH without the need for biomechanical testing and (3) identify what critical three-dimensional (3D) structural features dictate ONH robustness. METHODS 316 subjects had their ONHs imaged with OCT before and after acute IOP elevation through ophthalmo-dynamometry. IOP-induced lamina cribrosa (LC) deformations were then mapped in 3D and used to classify ONHs. Those with an average effective LC strain superior to 4% were considered fragile, while those with a strain inferior to 4% robust. Learning from these data, we compared three AI algorithms to predict ONH robustness strictly from a baseline (undeformed) OCT volume: (1) a random forest classifier; (2) an autoencoder and (3) a dynamic graph convolutional neural network (DGCNN). The latter algorithm also allowed us to identify what critical 3D structural features make a given ONH robust. RESULTS All three methods were able to predict ONH robustness from a single OCT volume scan alone and without the need to perform biomechanical testing. The DGCNN (area under the curve (AUC): 0.76±0.08) outperformed the autoencoder (AUC: 0.72±0.09) and the random forest classifier (AUC: 0.69±0.05). Interestingly, to assess ONH robustness, the DGCNN mainly used information from the scleral canal and the LC insertion sites. CONCLUSIONS We propose an AI-driven approach that can assess the robustness of a given ONH solely from a single OCT volume scan of the ONH, and without the need to perform biomechanical testing. Longitudinal studies should establish whether ONH robustness could help us identify fast visual field loss progressors. PRECIS Using geometric deep learning, we can assess optic nerve head robustness (ie, sensitivity to a change in IOP) from a standard OCT scan that might help to identify fast visual field loss progressors.
Collapse
Affiliation(s)
- Fabian A Braeu
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Singapore-MIT Alliance for Research and Technology, Singapore
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore
| | - Thanadet Chuangsuwanich
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore
| | - Tin A Tun
- Singapore Eye Research Institute, Singapore
- Singapore National Eye Centre, Singapore
| | - Shamira Perera
- Singapore Eye Research Institute, Singapore
- Singapore National Eye Centre, Singapore
| | - Rahat Husain
- Singapore Eye Research Institute, Singapore
- Singapore National Eye Centre, Singapore
| | - Alexandre H Thiery
- Statistics and Applied Probability, National University of Singapore, Singapore
| | - Tin Aung
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Singapore Eye Research Institute, Singapore
- Singapore National Eye Centre, Singapore
- Duke-NUS Graduate Medical School, Singapore
| | - George Barbastathis
- Singapore-MIT Alliance for Research and Technology, Singapore
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Michaël J A Girard
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore
- Duke-NUS Graduate Medical School, Singapore
- Institute for Molecular and Clinical Ophthalmology, Basel, Switzerland
| |
Collapse
|
3
|
Chiang CYN, Braeu FA, Chuangsuwanich T, Tan RKY, Chua J, Schmetterer L, Thiery AH, Buist ML, Girard MJA. Are Macula or Optic Nerve Head Structures Better at Diagnosing Glaucoma? An Answer Using Artificial Intelligence and Wide-Field Optical Coherence Tomography. Transl Vis Sci Technol 2024; 13:5. [PMID: 38197730 PMCID: PMC10787590 DOI: 10.1167/tvst.13.1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/06/2023] [Indexed: 01/11/2024] Open
Abstract
Purpose We wanted to develop a deep-learning algorithm to automatically segment optic nerve head (ONH) and macula structures in three-dimensional (3D) wide-field optical coherence tomography (OCT) scans and to assess whether 3D ONH or macula structures (or a combination of both) provide the best diagnostic power for glaucoma. Methods A cross-sectional comparative study was performed using 319 OCT scans of glaucoma eyes and 298 scans of nonglaucoma eyes. Scans were compensated to improve deep-tissue visibility. We developed a deep-learning algorithm to automatically label major tissue structures, trained with 270 manually annotated B-scans. The performance was assessed using the Dice coefficient (DC). A glaucoma classification algorithm (3D-CNN) was then designed using 500 OCT volumes and corresponding automatically segmented labels. This algorithm was trained and tested on three datasets: cropped scans of macular tissues, those of ONH tissues, and wide-field scans. The classification performance for each dataset was reported using the area under the curve (AUC). Results Our segmentation algorithm achieved a DC of 0.94 ± 0.003. The classification algorithm was best able to diagnose glaucoma using wide-field scans, followed by ONH scans, and finally macula scans, with AUCs of 0.99 ± 0.01, 0.93 ± 0.06 and 0.91 ± 0.11, respectively. Conclusions This study showed that wide-field OCT may allow for significantly improved glaucoma diagnosis over typical OCTs of the ONH or macula. Translational Relevance This could lead to mainstream clinical adoption of 3D wide-field OCT scan technology.
Collapse
Affiliation(s)
- Charis Y. N. Chiang
- Department of Biomedical Engineering, National University of Singapore, Singapore
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Fabian A. Braeu
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Singapore-MIT Alliance for Research and Technology, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thanadet Chuangsuwanich
- Department of Biomedical Engineering, National University of Singapore, Singapore
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Royston K. Y. Tan
- Department of Biomedical Engineering, National University of Singapore, Singapore
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Jacqueline Chua
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore
| | - Leopold Schmetterer
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore
- School of Chemical and Biological Engineering, Nanyang Technological University, Singapore
- Department of Clinical Pharmacology, Medical University of Vienna, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Alexandre H. Thiery
- Department of Statistics and Data Sciences, National University of Singapore, Singapore
| | - Martin L. Buist
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Michaël J. A. Girard
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Duke-NUS Graduate Medical School, Singapore
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| |
Collapse
|
4
|
Li D, Ran AR, Cheung CY, Prince JL. Deep learning in optical coherence tomography: Where are the gaps? Clin Exp Ophthalmol 2023; 51:853-863. [PMID: 37245525 PMCID: PMC10825778 DOI: 10.1111/ceo.14258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/30/2023]
Abstract
Optical coherence tomography (OCT) is a non-invasive optical imaging modality, which provides rapid, high-resolution and cross-sectional morphology of macular area and optic nerve head for diagnosis and managing of different eye diseases. However, interpreting OCT images requires experts in both OCT images and eye diseases since many factors such as artefacts and concomitant diseases can affect the accuracy of quantitative measurements made by post-processing algorithms. Currently, there is a growing interest in applying deep learning (DL) methods to analyse OCT images automatically. This review summarises the trends in DL-based OCT image analysis in ophthalmology, discusses the current gaps, and provides potential research directions. DL in OCT analysis shows promising performance in several tasks: (1) layers and features segmentation and quantification; (2) disease classification; (3) disease progression and prognosis; and (4) referral triage level prediction. Different studies and trends in the development of DL-based OCT image analysis are described and the following challenges are identified and described: (1) public OCT data are scarce and scattered; (2) models show performance discrepancies in real-world settings; (3) models lack of transparency; (4) there is a lack of societal acceptance and regulatory standards; and (5) OCT is still not widely available in underprivileged areas. More work is needed to tackle the challenges and gaps, before DL is further applied in OCT image analysis for clinical use.
Collapse
Affiliation(s)
- Dawei Li
- College of Future Technology, Peking University, Beijing, China
| | - An Ran Ran
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Carol Y. Cheung
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jerry L. Prince
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Schmetterer L, Scholl H, Garhöfer G, Janeschitz-Kriegl L, Corvi F, Sadda SR, Medeiros FA. Endpoints for clinical trials in ophthalmology. Prog Retin Eye Res 2023; 97:101160. [PMID: 36599784 DOI: 10.1016/j.preteyeres.2022.101160] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
With the identification of novel targets, the number of interventional clinical trials in ophthalmology has increased. Visual acuity has for a long time been considered the gold standard endpoint for clinical trials, but in the recent years it became evident that other endpoints are required for many indications including geographic atrophy and inherited retinal disease. In glaucoma the currently available drugs were approved based on their IOP lowering capacity. Some recent findings do, however, indicate that at the same level of IOP reduction, not all drugs have the same effect on visual field progression. For neuroprotection trials in glaucoma, novel surrogate endpoints are required, which may either include functional or structural parameters or a combination of both. A number of potential surrogate endpoints for ophthalmology clinical trials have been identified, but their validation is complicated and requires solid scientific evidence. In this article we summarize candidates for clinical endpoints in ophthalmology with a focus on retinal disease and glaucoma. Functional and structural biomarkers, as well as quality of life measures are discussed, and their potential to serve as endpoints in pivotal trials is critically evaluated.
Collapse
Affiliation(s)
- Leopold Schmetterer
- Singapore Eye Research Institute, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore; Academic Clinical Program, Duke-NUS Medical School, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore; Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria; Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria; Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland.
| | - Hendrik Scholl
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria
| | - Lucas Janeschitz-Kriegl
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Federico Corvi
- Eye Clinic, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Italy
| | - SriniVas R Sadda
- Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Felipe A Medeiros
- Vision, Imaging and Performance Laboratory, Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| |
Collapse
|
6
|
Braeu FA, Chuangsuwanich T, Tun TA, Perera SA, Husain R, Kadziauskienė A, Schmetterer L, Thiéry AH, Barbastathis G, Aung T, Girard MJA. Three-Dimensional Structural Phenotype of the Optic Nerve Head as a Function of Glaucoma Severity. JAMA Ophthalmol 2023; 141:882-889. [PMID: 37589980 PMCID: PMC10436184 DOI: 10.1001/jamaophthalmol.2023.3315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/05/2023] [Indexed: 08/18/2023]
Abstract
Importance The 3-dimensional (3-D) structural phenotype of glaucoma as a function of severity was thoroughly described and analyzed, enhancing understanding of its intricate pathology beyond current clinical knowledge. Objective To describe the 3-D structural differences in both connective and neural tissues of the optic nerve head (ONH) between different glaucoma stages using traditional and artificial intelligence-driven approaches. Design, Setting, and Participants This cross-sectional, clinic-based study recruited 541 Chinese individuals receiving standard clinical care at Singapore National Eye Centre, Singapore, and 112 White participants of a prospective observational study at Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania. The study was conducted from May 2022 to January 2023. All participants had their ONH imaged using spectral-domain optical coherence tomography and had their visual field assessed by standard automated perimetry. Main Outcomes and Measures (1) Clinician-defined 3-D structural parameters of the ONH and (2) 3-D structural landmarks identified by geometric deep learning that differentiated ONHs among 4 groups: no glaucoma, mild glaucoma (mean deviation [MD], ≥-6.00 dB), moderate glaucoma (MD, -6.01 to -12.00 dB), and advanced glaucoma (MD, <-12.00 dB). Results Study participants included 213 individuals without glaucoma (mean age, 63.4 years; 95% CI, 62.5-64.3 years; 126 females [59.2%]; 213 Chinese [100%] and 0 White individuals), 204 with mild glaucoma (mean age, 66.9 years; 95% CI, 66.0-67.8 years; 91 females [44.6%]; 178 Chinese [87.3%] and 26 White [12.7%] individuals), 118 with moderate glaucoma (mean age, 68.1 years; 95% CI, 66.8-69.4 years; 49 females [41.5%]; 97 Chinese [82.2%] and 21 White [17.8%] individuals), and 118 with advanced glaucoma (mean age, 68.5 years; 95% CI, 67.1-69.9 years; 43 females [36.4%]; 53 Chinese [44.9%] and 65 White [55.1%] individuals). The majority of ONH structural differences occurred in the early glaucoma stage, followed by a plateau effect in the later stages. Using a deep neural network, 3-D ONH structural differences were found to be present in both neural and connective tissues. Specifically, a mean of 57.4% (95% CI, 54.9%-59.9%, for no to mild glaucoma), 38.7% (95% CI, 36.9%-40.5%, for mild to moderate glaucoma), and 53.1 (95% CI, 50.8%-55.4%, for moderate to advanced glaucoma) of ONH landmarks that showed major structural differences were located in neural tissues with the remaining located in connective tissues. Conclusions and Relevance This study uncovered complex 3-D structural differences of the ONH in both neural and connective tissues as a function of glaucoma severity. Future longitudinal studies should seek to establish a connection between specific 3-D ONH structural changes and fast visual field deterioration and aim to improve the early detection of patients with rapid visual field loss in routine clinical care.
Collapse
Affiliation(s)
- Fabian A. Braeu
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Singapore–MIT Alliance for Research and Technology, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thanadet Chuangsuwanich
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tin A. Tun
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Duke-NUS Graduate Medical School, Singapore
| | - Shamira A. Perera
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Duke-NUS Graduate Medical School, Singapore
| | - Rahat Husain
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Aiste Kadziauskienė
- Clinic of Ears, Nose, Throat and Eye Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Center of Eye Diseases, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Leopold Schmetterer
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Duke-NUS Graduate Medical School, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE), Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore
- Department of Clinical Pharmacology, Medical University of Vienna, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Alexandre H. Thiéry
- Department of Statistics and Applied Probability, National University of Singapore, Singapore
| | - George Barbastathis
- Singapore–MIT Alliance for Research and Technology, Singapore
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge
| | - Tin Aung
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Duke-NUS Graduate Medical School, Singapore
| | - Michaël J. A. Girard
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Duke-NUS Graduate Medical School, Singapore
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| |
Collapse
|
7
|
Zhou Y, Lin G, Yu X, Cao Y, Cheng H, Shi C, Jiang J, Gao H, Lu F, Shen M. Deep learning segmentation of the tear fluid reservoir under the sclera lens in optical coherence tomography images. BIOMEDICAL OPTICS EXPRESS 2023; 14:1848-1861. [PMID: 37206122 PMCID: PMC10191653 DOI: 10.1364/boe.480247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 05/21/2023]
Abstract
The tear fluid reservoir (TFR) under the sclera lens is a unique characteristic providing optical neutralization of any aberrations from corneal irregularities. Anterior segment optical coherence tomography (AS-OCT) has become an important imaging modality for sclera lens fitting and visual rehabilitation therapy in both optometry and ophthalmology. Herein, we aimed to investigate whether deep learning can be used to segment the TFR from healthy and keratoconus eyes, with irregular corneal surfaces, in OCT images. Using AS-OCT, a dataset of 31850 images from 52 healthy and 46 keratoconus eyes, during sclera lens wear, was obtained and labeled with our previously developed algorithm of semi-automatic segmentation. A custom-improved U-shape network architecture with a full-range multi-scale feature-enhanced module (FMFE-Unet) was designed and trained. A hybrid loss function was designed to focus training on the TFR, to tackle the class imbalance problem. The experiments on our database showed an IoU, precision, specificity, and recall of 0.9426, 0.9678, 0.9965, and 0.9731, respectively. Furthermore, FMFE-Unet was found to outperform the other two state-of-the-art methods and ablation models, suggesting its strength in segmenting the TFR under the sclera lens depicted on OCT images. The application of deep learning for TFR segmentation in OCT images provides a powerful tool to assess changes in the dynamic tear film under the sclera lens, improving the efficiency and accuracy of lens fitting, and thus supporting the promotion of sclera lenses in clinical practice.
Collapse
Affiliation(s)
- Yuheng Zhou
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Guangqing Lin
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiangle Yu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yang Cao
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Hongling Cheng
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Ce Shi
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jun Jiang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Hebei Gao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325000, China
| | - Fan Lu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325000, China
| | - Meixiao Shen
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|
8
|
van Elst S, de Bloeme CM, Noteboom S, de Jong MC, Moll AC, Göricke S, de Graaf P, Caan MWA. Automatic segmentation and quantification of the optic nerve on MRI using a 3D U-Net. J Med Imaging (Bellingham) 2023; 10:034501. [PMID: 37197374 PMCID: PMC10185127 DOI: 10.1117/1.jmi.10.3.034501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/15/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023] Open
Abstract
Purpose Pathological conditions associated with the optic nerve (ON) can cause structural changes in the nerve. Quantifying these changes could provide further understanding of disease mechanisms. We aim to develop a framework that automatically segments the ON separately from its surrounding cerebrospinal fluid (CSF) on magnetic resonance imaging (MRI) and quantifies the diameter and cross-sectional area along the entire length of the nerve. Approach Multicenter data were obtained from retinoblastoma referral centers, providing a heterogeneous dataset of 40 high-resolution 3D T2-weighted MRI scans with manual ground truth delineations of both ONs. A 3D U-Net was used for ON segmentation, and performance was assessed in a tenfold cross-validation (n = 32 ) and on a separate test-set (n = 8 ) by measuring spatial, volumetric, and distance agreement with manual ground truths. Segmentations were used to quantify diameter and cross-sectional area along the length of the ON, using centerline extraction of tubular 3D surface models. Absolute agreement between automated and manual measurements was assessed by the intraclass correlation coefficient (ICC). Results The segmentation network achieved high performance, with a mean Dice similarity coefficient score of 0.84, median Hausdorff distance of 0.64 mm, and ICC of 0.95 on the test-set. The quantification method obtained acceptable correspondence to manual reference measurements with mean ICC values of 0.76 for the diameter and 0.71 for the cross-sectional area. Compared with other methods, our method precisely identifies the ON from surrounding CSF and accurately estimates its diameter along the nerve's centerline. Conclusions Our automated framework provides an objective method for ON assessment in vivo.
Collapse
Affiliation(s)
- Sabien van Elst
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Christiaan M. de Bloeme
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Samantha Noteboom
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, The Netherlands
| | - Marcus C. de Jong
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Annette C. Moll
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Ophthalmology, Amsterdam, The Netherlands
| | - Sophia Göricke
- University Hospital Essen, Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen, Germany
| | - Pim de Graaf
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Matthan W. A. Caan
- Amsterdam UMC location University of Amsterdam, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Thiéry AH, Braeu F, Tun TA, Aung T, Girard MJA. Medical Application of Geometric Deep Learning for the Diagnosis of Glaucoma. Transl Vis Sci Technol 2023; 12:23. [PMID: 36790820 PMCID: PMC9940771 DOI: 10.1167/tvst.12.2.23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Purpose (1) To assess the performance of geometric deep learning in diagnosing glaucoma from a single optical coherence tomography (OCT) scan of the optic nerve head and (2) to compare its performance to that obtained with a three-dimensional (3D) convolutional neural network (CNN), and with a gold-standard parameter, namely, the retinal nerve fiber layer (RNFL) thickness. Methods Scans of the optic nerve head were acquired with OCT for 477 glaucoma and 2296 nonglaucoma subjects. All volumes were automatically segmented using deep learning to identify seven major neural and connective tissues. Each optic nerve head was then represented as a 3D point cloud with approximately 1000 points. Geometric deep learning (PointNet) was then used to provide a glaucoma diagnosis from a single 3D point cloud. The performance of our approach (reported using the area under the curve [AUC]) was compared with that obtained with a 3D CNN, and with the RNFL thickness. Results PointNet was able to provide a robust glaucoma diagnosis solely from a 3D point cloud (AUC = 0.95 ± 0.01).The performance of PointNet was superior to that obtained with a 3D CNN (AUC = 0.87 ± 0.02 [raw OCT images] and 0.91 ± 0.02 [segmented OCT images]) and with that obtained from RNFL thickness alone (AUC = 0.80 ± 0.03). Conclusions We provide a proof of principle for the application of geometric deep learning in glaucoma. Our technique requires significantly less information as input to perform better than a 3D CNN, and with an AUC superior to that obtained from RNFL thickness. Translational Relevance Geometric deep learning may help us to improve and simplify diagnosis and prognosis applications in glaucoma.
Collapse
Affiliation(s)
- Alexandre H. Thiéry
- Department of Statistics and Data Science, National University of Singapore, Singapore
| | - Fabian Braeu
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore,Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tin A. Tun
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore,Duke-NUS Graduate Medical School, Singapore
| | - Tin Aung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore,Duke-NUS Graduate Medical School, Singapore
| | - Michaël J. A. Girard
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore,Duke-NUS Graduate Medical School, Singapore,Institute for Molecular and Clinical Ophthalmology, Basel, Switzerland
| |
Collapse
|
10
|
Braeu FA, Thiéry AH, Tun TA, Kadziauskiene A, Barbastathis G, Aung T, Girard MJA. Geometric Deep Learning to Identify the Critical 3D Structural Features of the Optic Nerve Head for Glaucoma Diagnosis. Am J Ophthalmol 2023; 250:38-48. [PMID: 36646242 DOI: 10.1016/j.ajo.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
PURPOSE To compare the performance of 2 relatively recent geometric deep learning techniques in diagnosing glaucoma from a single optical coherence tomographic (OCT) scan of the optic nerve head (ONH); and to identify the 3-dimensional (3D) structural features of the ONH that are critical for the diagnosis of glaucoma. DESIGN Comparison and evaluation of deep learning diagnostic algorithms. METHODS In this study, we included a total of 2247 nonglaucoma and 2259 glaucoma scans from 1725 participants. All participants had their ONHs imaged in 3D with Spectralis OCT. All OCT scans were automatically segmented using deep learning to identify major neural and connective tissues. Each ONH was then represented as a 3D point cloud. We used PointNet and dynamic graph convolutional neural network (DGCNN) to diagnose glaucoma from such 3D ONH point clouds and to identify the critical 3D structural features of the ONH for glaucoma diagnosis. RESULTS Both the DGCNN (area under the curve [AUC]: 0.97±0.01) and PointNet (AUC: 0.95±0.02) were able to accurately detect glaucoma from 3D ONH point clouds. The critical points (ie, critical structural features of the ONH) formed an hourglass pattern, with most of them located within the neuroretinal rim in the inferior and superior quadrant of the ONH. CONCLUSIONS The diagnostic accuracy of both geometric deep learning approaches was excellent. Moreover, we were able to identify the critical 3D structural features of the ONH for glaucoma diagnosis that tremendously improved the transparency and interpretability of our method. Consequently, our approach may have strong potential to be used in clinical applications for the diagnosis and prognosis of a wide range of ophthalmic disorders.
Collapse
Affiliation(s)
- Fabian A Braeu
- From the Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore National Eye Centre (F.A.B., M.J.A.G.), Singapore; Singapore-MIT Alliance for Research and Technology (F.A.B., G.B.), Singapore; Yong Loo Lin School of Medicine, National University of Singapore (F.A.B., T.A.), Singapore
| | - Alexandre H Thiéry
- Department of Statistics and Applied Probability, National University of Singapore (A.H.T.), Singapore
| | - Tin A Tun
- Singapore Eye Research Institute, Singapore National Eye Centre (T.A.T., T.A.), Singapore; Duke-NUS Graduate Medical School (T.A.T., T.A., M.J.A.G.), Singapore
| | - Aiste Kadziauskiene
- Clinic of Ears, Nose, Throat and Eye Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University (A.K.), Vilnius, Lithuania; Center of Eye diseases, Vilnius University Hospital Santaros Klinikos (A.K.), Vilnius, Lithuania
| | - George Barbastathis
- Singapore-MIT Alliance for Research and Technology (F.A.B., G.B.), Singapore; Department of Mechanical Engineering, Massachusetts Institute of Technology (G.B.), Cambridge, Massachusetts, USA
| | - Tin Aung
- Yong Loo Lin School of Medicine, National University of Singapore (F.A.B., T.A.), Singapore; Singapore Eye Research Institute, Singapore National Eye Centre (T.A.T., T.A.), Singapore; Duke-NUS Graduate Medical School (T.A.T., T.A., M.J.A.G.), Singapore
| | - Michaël J A Girard
- From the Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore National Eye Centre (F.A.B., M.J.A.G.), Singapore; Duke-NUS Graduate Medical School (T.A.T., T.A., M.J.A.G.), Singapore; Institute for Molecular and Clinical Ophthalmology (M.J.A.G.), Basel, Switzerland.
| |
Collapse
|
11
|
Girard MJA, Panda S, Tun TA, Wibroe EA, Najjar RP, Aung T, Thiéry AH, Hamann S, Fraser C, Milea D. Discriminating Between Papilledema and Optic Disc Drusen Using 3D Structural Analysis of the Optic Nerve Head. Neurology 2023; 100:e192-e202. [PMID: 36175153 DOI: 10.1212/wnl.0000000000201350] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/19/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The distinction of papilledema from other optic nerve head (ONH) lesions mimicking papilledema, such as optic disc drusen (ODD), can be difficult in clinical practice. We aimed the following: (1) to develop a deep learning algorithm to automatically identify major structures of the ONH in 3-dimensional (3D) optical coherence tomography (OCT) scans and (2) to exploit such information to robustly differentiate among ODD, papilledema, and healthy ONHs. METHODS This was a cross-sectional comparative study of patients from 3 sites (Singapore, Denmark, and Australia) with confirmed ODD, those with papilledema due to raised intracranial pressure, and healthy controls. Raster scans of the ONH were acquired using OCT imaging and then processed to improve deep-tissue visibility. First, a deep learning algorithm was developed to identify major ONH tissues and ODD regions. The performance of our algorithm was assessed using the Dice coefficient. Second, a classification algorithm (random forest) was designed to perform 3-class classifications (1: ODD, 2: papilledema, and 3: healthy ONHs) strictly from their drusen and prelamina swelling scores (calculated from the segmentations). To assess performance, we reported the area under the receiver operating characteristic curve for each class. RESULTS A total of 241 patients (256 imaged ONHs, including 105 ODD, 51 papilledema, and 100 healthy ONHs) were retrospectively included in this study. Using OCT images of the ONH, our segmentation algorithm was able to isolate neural and connective tissues and ODD regions/conglomerates whenever present. This was confirmed by an averaged Dice coefficient of 0.93 ± 0.03 on the test set, corresponding to good segmentation performance. Classification was achieved with high AUCs, that is, 0.99 ± 0.001 for the detection of ODD, 0.99 ± 0.005 for the detection of papilledema, and 0.98 ± 0.01 for the detection of healthy ONHs. DISCUSSION Our artificial intelligence approach can discriminate ODD from papilledema, strictly using a single OCT scan of the ONH. Our classification performance was very good in the studied population, with the caveat that validation in a much larger population is warranted. Our approach may have the potential to establish OCT imaging as one of the mainstays of diagnostic imaging for ONH disorders in neuro-ophthalmology, in addition to fundus photography.
Collapse
Affiliation(s)
- Michaël J A Girard
- From the Ophthalmic Engineering & Innovation Laboratory (M.J.A.G., S.P.), Singapore Eye Research Institute (T.A.T., R.P.N., T.A., D.M.), Singapore National Eye Centre; Duke-NUS Graduate Medical School (M.J.A.G., T.A.T., R.P.N., T.A., D.M.), Singapore; Institute for Molecular and Clinical Ophthalmology (M.J.A.G.), Basel, Switzerland; Department of Ophthalmology (E.A.W., S.H.), Rigshospitalet, University of Copenhagen, Denmark; Yong Loo Lin School of Medicine (R.P.N., T.A.), and Department of Statistics and Applied Probability (A.H.T.), National University of Singapore; and Save Sight Institute (C.F.), Faculty of Health and Medicine, The University of Sydney, New South Wales, Australia.
| | - Satish Panda
- From the Ophthalmic Engineering & Innovation Laboratory (M.J.A.G., S.P.), Singapore Eye Research Institute (T.A.T., R.P.N., T.A., D.M.), Singapore National Eye Centre; Duke-NUS Graduate Medical School (M.J.A.G., T.A.T., R.P.N., T.A., D.M.), Singapore; Institute for Molecular and Clinical Ophthalmology (M.J.A.G.), Basel, Switzerland; Department of Ophthalmology (E.A.W., S.H.), Rigshospitalet, University of Copenhagen, Denmark; Yong Loo Lin School of Medicine (R.P.N., T.A.), and Department of Statistics and Applied Probability (A.H.T.), National University of Singapore; and Save Sight Institute (C.F.), Faculty of Health and Medicine, The University of Sydney, New South Wales, Australia
| | - Tin Aung Tun
- From the Ophthalmic Engineering & Innovation Laboratory (M.J.A.G., S.P.), Singapore Eye Research Institute (T.A.T., R.P.N., T.A., D.M.), Singapore National Eye Centre; Duke-NUS Graduate Medical School (M.J.A.G., T.A.T., R.P.N., T.A., D.M.), Singapore; Institute for Molecular and Clinical Ophthalmology (M.J.A.G.), Basel, Switzerland; Department of Ophthalmology (E.A.W., S.H.), Rigshospitalet, University of Copenhagen, Denmark; Yong Loo Lin School of Medicine (R.P.N., T.A.), and Department of Statistics and Applied Probability (A.H.T.), National University of Singapore; and Save Sight Institute (C.F.), Faculty of Health and Medicine, The University of Sydney, New South Wales, Australia
| | - Elisabeth A Wibroe
- From the Ophthalmic Engineering & Innovation Laboratory (M.J.A.G., S.P.), Singapore Eye Research Institute (T.A.T., R.P.N., T.A., D.M.), Singapore National Eye Centre; Duke-NUS Graduate Medical School (M.J.A.G., T.A.T., R.P.N., T.A., D.M.), Singapore; Institute for Molecular and Clinical Ophthalmology (M.J.A.G.), Basel, Switzerland; Department of Ophthalmology (E.A.W., S.H.), Rigshospitalet, University of Copenhagen, Denmark; Yong Loo Lin School of Medicine (R.P.N., T.A.), and Department of Statistics and Applied Probability (A.H.T.), National University of Singapore; and Save Sight Institute (C.F.), Faculty of Health and Medicine, The University of Sydney, New South Wales, Australia
| | - Raymond P Najjar
- From the Ophthalmic Engineering & Innovation Laboratory (M.J.A.G., S.P.), Singapore Eye Research Institute (T.A.T., R.P.N., T.A., D.M.), Singapore National Eye Centre; Duke-NUS Graduate Medical School (M.J.A.G., T.A.T., R.P.N., T.A., D.M.), Singapore; Institute for Molecular and Clinical Ophthalmology (M.J.A.G.), Basel, Switzerland; Department of Ophthalmology (E.A.W., S.H.), Rigshospitalet, University of Copenhagen, Denmark; Yong Loo Lin School of Medicine (R.P.N., T.A.), and Department of Statistics and Applied Probability (A.H.T.), National University of Singapore; and Save Sight Institute (C.F.), Faculty of Health and Medicine, The University of Sydney, New South Wales, Australia
| | - Tin Aung
- From the Ophthalmic Engineering & Innovation Laboratory (M.J.A.G., S.P.), Singapore Eye Research Institute (T.A.T., R.P.N., T.A., D.M.), Singapore National Eye Centre; Duke-NUS Graduate Medical School (M.J.A.G., T.A.T., R.P.N., T.A., D.M.), Singapore; Institute for Molecular and Clinical Ophthalmology (M.J.A.G.), Basel, Switzerland; Department of Ophthalmology (E.A.W., S.H.), Rigshospitalet, University of Copenhagen, Denmark; Yong Loo Lin School of Medicine (R.P.N., T.A.), and Department of Statistics and Applied Probability (A.H.T.), National University of Singapore; and Save Sight Institute (C.F.), Faculty of Health and Medicine, The University of Sydney, New South Wales, Australia
| | - Alexandre H Thiéry
- From the Ophthalmic Engineering & Innovation Laboratory (M.J.A.G., S.P.), Singapore Eye Research Institute (T.A.T., R.P.N., T.A., D.M.), Singapore National Eye Centre; Duke-NUS Graduate Medical School (M.J.A.G., T.A.T., R.P.N., T.A., D.M.), Singapore; Institute for Molecular and Clinical Ophthalmology (M.J.A.G.), Basel, Switzerland; Department of Ophthalmology (E.A.W., S.H.), Rigshospitalet, University of Copenhagen, Denmark; Yong Loo Lin School of Medicine (R.P.N., T.A.), and Department of Statistics and Applied Probability (A.H.T.), National University of Singapore; and Save Sight Institute (C.F.), Faculty of Health and Medicine, The University of Sydney, New South Wales, Australia
| | - Steffen Hamann
- From the Ophthalmic Engineering & Innovation Laboratory (M.J.A.G., S.P.), Singapore Eye Research Institute (T.A.T., R.P.N., T.A., D.M.), Singapore National Eye Centre; Duke-NUS Graduate Medical School (M.J.A.G., T.A.T., R.P.N., T.A., D.M.), Singapore; Institute for Molecular and Clinical Ophthalmology (M.J.A.G.), Basel, Switzerland; Department of Ophthalmology (E.A.W., S.H.), Rigshospitalet, University of Copenhagen, Denmark; Yong Loo Lin School of Medicine (R.P.N., T.A.), and Department of Statistics and Applied Probability (A.H.T.), National University of Singapore; and Save Sight Institute (C.F.), Faculty of Health and Medicine, The University of Sydney, New South Wales, Australia
| | - Clare Fraser
- From the Ophthalmic Engineering & Innovation Laboratory (M.J.A.G., S.P.), Singapore Eye Research Institute (T.A.T., R.P.N., T.A., D.M.), Singapore National Eye Centre; Duke-NUS Graduate Medical School (M.J.A.G., T.A.T., R.P.N., T.A., D.M.), Singapore; Institute for Molecular and Clinical Ophthalmology (M.J.A.G.), Basel, Switzerland; Department of Ophthalmology (E.A.W., S.H.), Rigshospitalet, University of Copenhagen, Denmark; Yong Loo Lin School of Medicine (R.P.N., T.A.), and Department of Statistics and Applied Probability (A.H.T.), National University of Singapore; and Save Sight Institute (C.F.), Faculty of Health and Medicine, The University of Sydney, New South Wales, Australia
| | - Dan Milea
- From the Ophthalmic Engineering & Innovation Laboratory (M.J.A.G., S.P.), Singapore Eye Research Institute (T.A.T., R.P.N., T.A., D.M.), Singapore National Eye Centre; Duke-NUS Graduate Medical School (M.J.A.G., T.A.T., R.P.N., T.A., D.M.), Singapore; Institute for Molecular and Clinical Ophthalmology (M.J.A.G.), Basel, Switzerland; Department of Ophthalmology (E.A.W., S.H.), Rigshospitalet, University of Copenhagen, Denmark; Yong Loo Lin School of Medicine (R.P.N., T.A.), and Department of Statistics and Applied Probability (A.H.T.), National University of Singapore; and Save Sight Institute (C.F.), Faculty of Health and Medicine, The University of Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Ma D, Pasquale LR, Girard MJA, Leung CKS, Jia Y, Sarunic MV, Sappington RM, Chan KC. Reverse translation of artificial intelligence in glaucoma: Connecting basic science with clinical applications. FRONTIERS IN OPHTHALMOLOGY 2023; 2:1057896. [PMID: 36866233 PMCID: PMC9976697 DOI: 10.3389/fopht.2022.1057896] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 04/16/2023]
Abstract
Artificial intelligence (AI) has been approved for biomedical research in diverse areas from bedside clinical studies to benchtop basic scientific research. For ophthalmic research, in particular glaucoma, AI applications are rapidly growing for potential clinical translation given the vast data available and the introduction of federated learning. Conversely, AI for basic science remains limited despite its useful power in providing mechanistic insight. In this perspective, we discuss recent progress, opportunities, and challenges in the application of AI in glaucoma for scientific discoveries. Specifically, we focus on the research paradigm of reverse translation, in which clinical data are first used for patient-centered hypothesis generation followed by transitioning into basic science studies for hypothesis validation. We elaborate on several distinctive areas of research opportunities for reverse translation of AI in glaucoma including disease risk and progression prediction, pathology characterization, and sub-phenotype identification. We conclude with current challenges and future opportunities for AI research in basic science for glaucoma such as inter-species diversity, AI model generalizability and explainability, as well as AI applications using advanced ocular imaging and genomic data.
Collapse
Affiliation(s)
- Da Ma
- School of Medicine, Wake Forest University, Winston-Salem, NC, United States
- Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Louis R. Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michaël J. A. Girard
- Ophthalmic Engineering & Innovation Laboratory (OEIL), Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Institute for Molecular and Clinical Ophthalmology, Basel, Switzerland
| | | | - Yali Jia
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Marinko V. Sarunic
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Rebecca M. Sappington
- School of Medicine, Wake Forest University, Winston-Salem, NC, United States
- Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Kevin C. Chan
- Departments of Ophthalmology and Radiology, Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
| |
Collapse
|
13
|
Wang H, Gong D, Augustinack JC, Magnain C. Quantitative optical coherence microscopy of neuron morphology in human entorhinal cortex. Front Neurosci 2023; 17:1074660. [PMID: 37152599 PMCID: PMC10160389 DOI: 10.3389/fnins.2023.1074660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/06/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction The size and shape of neurons are important features indicating aging and the pathology of neurodegenerative diseases. Despite the significant advances of optical microscopy, quantitative analysis of the neuronal features in the human brain remains largely incomplete. Traditional histology on thin slices bears tremendous distortions in three-dimensional reconstruction, the magnitude of which are often greater than the structure of interest. Recently development of tissue clearing techniques enable the whole brain to be analyzed in small animals; however, the application in the human remains challenging. Methods In this study, we present a label-free quantitative optical coherence microscopy (OCM) technique to obtain the morphological parameters of neurons in human entorhinal cortex (EC). OCM uses the intrinsic back-scattering property of tissue to identify individual neurons in 3D. The area, length, width, and orientation of individual neurons are quantified and compared between layer II and III in EC. Results The high-resolution mapping of neuron size, shape, and orientation shows significant differences between layer II and III neurons in EC. The results are validated by standard Nissl staining of the same samples. Discussion The quantitative OCM technique in our study offers a new solution to analyze variety of neurons and their organizations in the human brain, which opens new insights in advancing our understanding of neurodegenerative diseases.
Collapse
|
14
|
Chen D, Ran Ran A, Fang Tan T, Ramachandran R, Li F, Cheung CY, Yousefi S, Tham CCY, Ting DSW, Zhang X, Al-Aswad LA. Applications of Artificial Intelligence and Deep Learning in Glaucoma. Asia Pac J Ophthalmol (Phila) 2023; 12:80-93. [PMID: 36706335 DOI: 10.1097/apo.0000000000000596] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/06/2022] [Indexed: 01/28/2023] Open
Abstract
Diagnosis and detection of progression of glaucoma remains challenging. Artificial intelligence-based tools have the potential to improve and standardize the assessment of glaucoma but development of these algorithms is difficult given the multimodal and variable nature of the diagnosis. Currently, most algorithms are focused on a single imaging modality, specifically screening and diagnosis based on fundus photos or optical coherence tomography images. Use of anterior segment optical coherence tomography and goniophotographs is limited. The majority of algorithms designed for disease progression prediction are based on visual fields. No studies in our literature search assessed the use of artificial intelligence for treatment response prediction and no studies conducted prospective testing of their algorithms. Additional challenges to the development of artificial intelligence-based tools include scarcity of data and a lack of consensus in diagnostic criteria. Although research in the use of artificial intelligence for glaucoma is promising, additional work is needed to develop clinically usable tools.
Collapse
Affiliation(s)
- Dinah Chen
- Department of Ophthalmology, NYU Langone Health, New York City, NY
- Genentech Inc, South San Francisco, CA
| | - An Ran Ran
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Lam Kin Chung, Jet King-Shing Ho Glaucoma Treatment And Research Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Ting Fang Tan
- Singapore Eye Research Institute, Singapore
- Singapore National Eye Center, Singapore
| | | | - Fei Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Carol Y Cheung
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Lam Kin Chung, Jet King-Shing Ho Glaucoma Treatment And Research Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Siamak Yousefi
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, TN
| | - Clement C Y Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Lam Kin Chung, Jet King-Shing Ho Glaucoma Treatment And Research Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Daniel S W Ting
- Singapore Eye Research Institute, Singapore
- Singapore National Eye Center, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore
| | - Xiulan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | | |
Collapse
|
15
|
Heikka T, Jansonius NM. Influence of signal‐to‐noise ratio, glaucoma stage and segmentation algorithm on
OCT
usability for quantifying layer thicknesses in the peripapillary retina. Acta Ophthalmol 2022; 101:251-260. [PMID: 36331147 DOI: 10.1111/aos.15279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE OCT can be used for glaucoma assessment, but its usefulness may depend on image quality, disease stage and segmentation algorithm. We aimed to determine how layer thicknesses as assessed with different algorithms depend on image quality and disease stage, how reproducible the algorithms are, and if the algorithms (dis)agree. METHODS Optic disc OCT data (Canon OCT-HS100) from 20 healthy subjects and 28 early, 29 moderate, and 23 severe glaucoma patients were assessed with four different algorithms (CANON, IOWA, FWHM, DOCTRAP). We measured retinal nerve fibre layer thickness (RNFLT) and total retinal thickness (TRT) along the 1.7-mm-radius OCT measurement circle centred at the optic disc. In healthy subjects, image quality was degraded with neutral density filters (0.3-0.9 optical density [OD]); three scans were made to assess repeatability. Results were analysed with ANOVA with Bonferroni corrected t-tests for post hoc analysis and with intraclass correlation coefficient (ICC) analysis. RESULTS For all algorithms, RNFLT was more sensitive to image quality than TRT. Both RNFLT and TRT showed differences between healthy and glaucoma (all algorithms p < 0.001 for both RNFLT and TRT) and between early and moderate glaucoma (RNFLT: p = 0.001 to p = 0.09; TRT: p < 0.001 to p = 0.03); neither was able to discriminate between moderate and severe glaucoma (p = 0.08 to p = 1.0). Generally, repeatability was excellent (ICC >0.75); agreement between algorithms varied from moderate to excellent. CONCLUSIONS OCT becomes less informative with glaucoma progression, irrespective of the algorithm. For good-quality scans, RNFLT and TRT perform similarly; TRT may be advantageous with poor image quality.
Collapse
Affiliation(s)
- Tuomas Heikka
- Department of Ophthalmology, University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Nomdo M. Jansonius
- Department of Ophthalmology, University of Groningen University Medical Center Groningen Groningen The Netherlands
- Graduate School of Medical Sciences (Research School of Behavioural and Cognitive Neurosciences) University of Groningen Groningen The Netherlands
| |
Collapse
|
16
|
Measurement of retinal nerve fiber layer thickness with a deep learning algorithm in ischemic optic neuropathy and optic neuritis. Sci Rep 2022; 12:17109. [PMID: 36224300 PMCID: PMC9556618 DOI: 10.1038/s41598-022-22135-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/10/2022] [Indexed: 01/04/2023] Open
Abstract
This work aims at determining the ability of a deep learning (DL) algorithm to measure retinal nerve fiber layer (RNFL) thickness from optical coherence tomography (OCT) scans in anterior ischemic optic neuropathy (NAION) and demyelinating optic neuritis (ON). The training/validation dataset included 750 RNFL OCT B-scans. Performance of our algorithm was evaluated on 194 OCT B-scans from 70 healthy eyes, 82 scans from 28 NAION eyes, and 84 scans of 29 ON eyes. Results were compared to manual segmentation as a ground-truth and to RNFL calculations from the built-in instrument software. The Dice coefficient for the test images was 0.87. The mean average RNFL thickness using our U-Net was not different from the manually segmented best estimate and OCT machine data in control and ON eyes. In NAION eyes, while the mean average RNFL thickness using our U-Net algorithm was not different from the manual segmented value, the OCT machine data were different from the manual segmented values. In NAION eyes, the MAE of the average RNFL thickness was 1.18 ± 0.69 μm and 6.65 ± 5.37 μm in the U-Net algorithm segmentation and the conventional OCT machine data, respectively (P = 0.0001).
Collapse
|
17
|
Thompson AC, Falconi A, Sappington RM. Deep learning and optical coherence tomography in glaucoma: Bridging the diagnostic gap on structural imaging. FRONTIERS IN OPHTHALMOLOGY 2022; 2:937205. [PMID: 38983522 PMCID: PMC11182271 DOI: 10.3389/fopht.2022.937205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/22/2022] [Indexed: 07/11/2024]
Abstract
Glaucoma is a leading cause of progressive blindness and visual impairment worldwide. Microstructural evidence of glaucomatous damage to the optic nerve head and associated tissues can be visualized using optical coherence tomography (OCT). In recent years, development of novel deep learning (DL) algorithms has led to innovative advances and improvements in automated detection of glaucomatous damage and progression on OCT imaging. DL algorithms have also been trained utilizing OCT data to improve detection of glaucomatous damage on fundus photography, thus improving the potential utility of color photos which can be more easily collected in a wider range of clinical and screening settings. This review highlights ten years of contributions to glaucoma detection through advances in deep learning models trained utilizing OCT structural data and posits future directions for translation of these discoveries into the field of aging and the basic sciences.
Collapse
Affiliation(s)
- Atalie C. Thompson
- Department of Surgical Ophthalmology, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Internal Medicine, Gerontology, and Geriatric Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Aurelio Falconi
- Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Rebecca M. Sappington
- Department of Surgical Ophthalmology, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston Salem, NC, United States
| |
Collapse
|
18
|
Marques R, Andrade De Jesus D, Barbosa-Breda J, Van Eijgen J, Stalmans I, van Walsum T, Klein S, G Vaz P, Sánchez Brea L. Automatic Segmentation of the Optic Nerve Head Region in Optical Coherence Tomography: A Methodological Review. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 220:106801. [PMID: 35429812 DOI: 10.1016/j.cmpb.2022.106801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/07/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
The optic nerve head (ONH) represents the intraocular section of the optic nerve, which is prone to damage by intraocular pressure (IOP). The advent of optical coherence tomography (OCT) has enabled the evaluation of novel ONH parameters, namely the depth and curvature of the lamina cribrosa (LC). Together with the Bruch's membrane minimum-rim-width (BMO-MRW), these seem to be promising ONH parameters for diagnosis and monitoring of retinal diseases such as glaucoma. Nonetheless, these OCT derived biomarkers are mostly extracted through manual segmentation, which is time-consuming and prone to bias, thus limiting their usability in clinical practice. The automatic segmentation of ONH in OCT scans could further improve the current clinical management of glaucoma and other diseases. This review summarizes the current state-of-the-art in automatic segmentation of the ONH in OCT. PubMed and Scopus were used to perform a systematic review. Additional works from other databases (IEEE, Google Scholar and ARVO IOVS) were also included, resulting in a total of 29 reviewed studies. For each algorithm, the methods, the size and type of dataset used for validation, and the respective results were carefully analysed. The results show a lack of consensus regarding the definition of segmented regions, extracted parameters and validation approaches, highlighting the importance and need of standardized methodologies for ONH segmentation. Only with a concrete set of guidelines, these automatic segmentation algorithms will build trust in data-driven segmentation models and be able to enter clinical practice.
Collapse
Affiliation(s)
- Rita Marques
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UC), Department of Physics, University of Coimbra, Coimbra, Portugal; Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Danilo Andrade De Jesus
- Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands.
| | - João Barbosa-Breda
- Research Group Ophthalmology, Department of Neurosciences, KU Leuven, Leuven, Belgium; Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Porto, Portugal; Ophthalmology Department, São João Universitary Hospital Center, Porto, Portugal
| | - Jan Van Eijgen
- Research Group Ophthalmology, Department of Neurosciences, KU Leuven, Leuven, Belgium; Department of Ophthalmology, University Hospitals UZ Leuven, Leuven, Belgium
| | - Ingeborg Stalmans
- Research Group Ophthalmology, Department of Neurosciences, KU Leuven, Leuven, Belgium; Department of Ophthalmology, University Hospitals UZ Leuven, Leuven, Belgium
| | - Theo van Walsum
- Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Stefan Klein
- Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Pedro G Vaz
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UC), Department of Physics, University of Coimbra, Coimbra, Portugal
| | - Luisa Sánchez Brea
- Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
19
|
Panda SK, Cheong H, Tun TA, Devella SK, Senthil V, Krishnadas R, Buist ML, Perera S, Cheng CY, Aung T, Thiéry AH, Girard MJ. Describing the Structural Phenotype of the Glaucomatous Optic Nerve Head Using Artificial Intelligence. Am J Ophthalmol 2022; 236:172-182. [PMID: 34157276 DOI: 10.1016/j.ajo.2021.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE To develop a novel deep-learning approach that can describe the structural phenotype of the glaucomatous optic nerve head (ONH) and can be used as a robust glaucoma diagnosis tool. DESIGN Retrospective, deep-learning approach diagnosis study. METHOD We trained a deep-learning network to segment 3 neural-tissue and 4 connective-tissue layers of the ONH. The segmented optical coherence tomography images were then processed by a customized autoencoder network with an additional parallel branch for binary classification. The encoder part of the autoencoder reduced the segmented optical coherence tomography images into a low-dimensional latent space (LS), whereas the decoder and the classification branches reconstructed the images and classified them as glaucoma or nonglaucoma, respectively. We performed principal component analysis on the latent parameters and identified the principal components (PCs). Subsequently, the magnitude of each PC was altered in steps and reported how it impacted the morphology of the ONH. RESULTS The image reconstruction quality and diagnostic accuracy increased with the size of the LS. With 54 parameters in the LS, the diagnostic accuracy was 92.0 ± 2.3% with a sensitivity of 90.0 ± 2.4% (at 95% specificity), and the corresponding Dice coefficient for the reconstructed images was 0.86 ± 0.04. By changing the magnitudes of PC in steps, we were able to reveal how the morphology of the ONH changes as one transitions from a "nonglaucoma" to a "glaucoma" condition. CONCLUSIONS Our network was able to identify novel biomarkers of the ONH for glaucoma diagnosis. Specifically, the structural features identified by our algorithm were found to be related to clinical observations of glaucoma.
Collapse
|
20
|
Panda SK, Cheong H, Tun TA, Chuangsuwanich T, Kadziauskiene A, Senthil V, Krishnadas R, Buist ML, Perera S, Cheng CY, Aung T, Thiery AH, Girard MJ. The three-dimensional structural configuration of the central retinal vessel trunk and branches as a glaucoma biomarker. Am J Ophthalmol 2022; 240:205-216. [PMID: 35247336 DOI: 10.1016/j.ajo.2022.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 11/01/2022]
Abstract
PURPOSE To assess whether the 3-dimensional (3D) structural configuration of the central retinal vessel trunk and its branches (CRVT&B) could be used as a diagnostic marker for glaucoma. DESIGN Retrospective, deep-learning approach diagnosis study. METHODS We trained a deep learning network to automatically segment the CRVT&B from the B-scans of the optical coherence tomography (OCT) volume of the optic nerve head. Subsequently, 2 different approaches were used for glaucoma diagnosis using the structural configuration of the CRVT&B as extracted from the OCT volumes. In the first approach, we aimed to provide a diagnosis using only 3D convolutional neural networks and the 3D structure of the CRVT&B. For the second approach, we projected the 3D structure of the CRVT&B orthographically onto sagittal, frontal, and transverse planes to obtain 3 two-dimensional (2D) images, and then a 2D convolutional neural network was used for diagnosis. The segmentation accuracy was evaluated using the Dice coefficient, whereas the diagnostic accuracy was assessed using the area under the receiver operating characteristic curves (AUCs). The diagnostic performance of the CRVT&B was also compared with that of retinal nerve fiber layer (RNFL) thickness (calculated in the same cohorts). RESULTS Our segmentation network was able to efficiently segment retinal blood vessels from OCT scans. On a test set, we achieved a Dice coefficient of 0.81 ± 0.07. The 3D and 2D diagnostic networks were able to differentiate glaucoma from nonglaucoma subjects with accuracies of 82.7% and 83.3%, respectively. The corresponding AUCs for the CRVT&B were 0.89 and 0.90, higher than those obtained with RNFL thickness alone (AUCs ranging from 0.74 to 0.80). CONCLUSIONS Our work demonstrated that the diagnostic power of the CRVT&B is superior to that of a gold-standard glaucoma parameter, that is, RNFL thickness. Our work also suggested that the major retinal blood vessels form a "skeleton"-the configuration of which may be representative of major optic nerve head structural changes as typically observed with the development and progression of glaucoma.
Collapse
|
21
|
Nerve optic segmentation in CT images using a deep learning model and a texture descriptor. COMPLEX INTELL SYST 2022. [DOI: 10.1007/s40747-022-00694-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractThe increased intracranial pressure (ICP) can be described as an increase in pressure around the brain and can lead to serious health problems. The assessment of ultrasound images is commonly conducted by skilled experts which is a time-consuming approach, but advanced computer-aided diagnosis (CAD) systems can assist the physician to decrease the time of ICP diagnosis. The accurate detection of the nerve optic regions, with drawing a precise slope line behind the eyeball and calculating the diameter of nerve optic, are the main aims of this research. First, the Fuzzy C-mean (FCM) clustering is employed for segmenting the input CT screening images into the different parts. Second, a histogram equalization approach is used for region-based image quality enhancement. Then, the Local Directional Number method (LDN) is used for representing some key information in a new image. Finally, a cascade Convolutional Neural Network (CNN) is employed for nerve optic segmentation by two distinct input images. Comprehensive experiments on the CT screening dataset [The Cancer Imaging Archive (TCIA)] consisting of 1600 images show the competitive results of inaccurate extraction of the brain features. Also, the indexes such as Dice, Specificity, and Precision for the proposed approach are reported 87.7%, 91.3%, and 90.1%, respectively. The final classification results show that the proposed approach effectively and accurately detects the nerve optic and its diameter in comparison with the other methods. Therefore, this method can be used for early diagnose of ICP and preventing the occurrence of serious health problems in patients.
Collapse
|
22
|
Bunod R, Augstburger E, Brasnu E, Labbe A, Baudouin C. [Artificial intelligence and glaucoma: A literature review]. J Fr Ophtalmol 2022; 45:216-232. [PMID: 34991909 DOI: 10.1016/j.jfo.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/18/2021] [Indexed: 11/26/2022]
Abstract
In recent years, research in artificial intelligence (AI) has experienced an unprecedented surge in the field of ophthalmology, in particular glaucoma. The diagnosis and follow-up of glaucoma is complex and relies on a body of clinical evidence and ancillary tests. This large amount of information from structural and functional testing of the optic nerve and macula makes glaucoma a particularly appropriate field for the application of AI. In this paper, we will review work using AI in the field of glaucoma, whether for screening, diagnosis or detection of progression. Many AI strategies have shown promising results for glaucoma detection using fundus photography, optical coherence tomography, or automated perimetry. The combination of these imaging modalities increases the performance of AI algorithms, with results comparable to those of humans. We will discuss potential applications as well as obstacles and limitations to the deployment and validation of such models. While there is no doubt that AI has the potential to revolutionize glaucoma management and screening, research in the coming years will need to address unavoidable questions regarding the clinical significance of such results and the explicability of the predictions.
Collapse
Affiliation(s)
- R Bunod
- Service d'ophtalmologie 3, IHU FOReSIGHT, centre hospitalier national des Quinze-Vingts, 28, rue de Charenton, 75012 Paris, France.
| | - E Augstburger
- Service d'ophtalmologie 3, IHU FOReSIGHT, centre hospitalier national des Quinze-Vingts, 28, rue de Charenton, 75012 Paris, France
| | - E Brasnu
- Service d'ophtalmologie 3, IHU FOReSIGHT, centre hospitalier national des Quinze-Vingts, 28, rue de Charenton, 75012 Paris, France; CHNO des Quinze-Vingts, IHU FOReSIGHT, INSERM-DGOS CIC 1423, 17, rue Moreau, 75012 Paris, France; Sorbonne universités, INSERM, CNRS, institut de la Vision, 17, rue Moreau, 75012 Paris, France
| | - A Labbe
- Service d'ophtalmologie 3, IHU FOReSIGHT, centre hospitalier national des Quinze-Vingts, 28, rue de Charenton, 75012 Paris, France; CHNO des Quinze-Vingts, IHU FOReSIGHT, INSERM-DGOS CIC 1423, 17, rue Moreau, 75012 Paris, France; Sorbonne universités, INSERM, CNRS, institut de la Vision, 17, rue Moreau, 75012 Paris, France; Service d'ophtalmologie, hôpital Ambroise-Paré, AP-HP, université de Paris Saclay, 9, avenue Charles-de-Gaulle, 92100 Boulogne-Billancourt, France
| | - C Baudouin
- Service d'ophtalmologie 3, IHU FOReSIGHT, centre hospitalier national des Quinze-Vingts, 28, rue de Charenton, 75012 Paris, France; CHNO des Quinze-Vingts, IHU FOReSIGHT, INSERM-DGOS CIC 1423, 17, rue Moreau, 75012 Paris, France; Sorbonne universités, INSERM, CNRS, institut de la Vision, 17, rue Moreau, 75012 Paris, France; Service d'ophtalmologie, hôpital Ambroise-Paré, AP-HP, université de Paris Saclay, 9, avenue Charles-de-Gaulle, 92100 Boulogne-Billancourt, France
| |
Collapse
|
23
|
Diener R, Treder M, Eter N. [Diagnostics of diseases of the optic nerve head in times of artificial intelligence and big data]. Ophthalmologe 2021; 118:893-899. [PMID: 33890129 PMCID: PMC8062109 DOI: 10.1007/s00347-021-01385-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 11/19/2022]
Abstract
Hintergrund Der Einsatz von künstlicher Intelligenz (KI) ist unter anderem in der automatischen Bildsegmentierung, -analyse und Klassifikation interessant und bereits für verschiedene Bereiche der Augenheilkunde beschrieben. Fragestellung Diese Arbeit soll einen Überblick über aktuelle Ansätze und Fortschritte bei der Anwendung von Big Data und KI bei verschiedenen Erkrankungen des Sehnervenkopfes geben. Material und Methode Es wurde eine PubMed-Recherche durchgeführt. Gesucht wurde nach Studien, die klinische Fragestellungen mithilfe von Big-Data-Ansätzen beantworteten oder klassische Methoden des maschinellen Lernens bei der Analyse von multimodaler Bildgebung des Sehnervenkopfes verwendeten. Ergebnisse Big Data kann bei Volkskrankheiten wie dem Glaukom helfen, klinische Fragestellungen zu beantworten. KI findet sowohl bei der Segmentierung von multimodaler Bildgebung des Sehnervenkopfes als auch bei der Klassifikation von Erkrankungen wie dem Glaukom oder der Stauungspapille auf diesen Bilddaten Anwendung. Schlussfolgerung Mithilfe von Big Data und KI können Zusammenhänge besser erkannt und die Diagnostik und Verlaufsbeurteilung von Erkrankungen des Sehnervenkopfes erleichtert oder automatisiert werden. Eine Voraussetzung für die klinische Anwendung ist in Europa die CE-Kennzeichnung als ein Medizinprodukt und in den USA die Zulassung durch die Food and Drug Administration.
Collapse
Affiliation(s)
- R Diener
- Klinik für Augenheilkunde, Universitätsklinikum Münster, Domagkstr. 15, 48149, Münster, Deutschland.
| | - M Treder
- Klinik für Augenheilkunde, Universitätsklinikum Münster, Domagkstr. 15, 48149, Münster, Deutschland
| | - N Eter
- Klinik für Augenheilkunde, Universitätsklinikum Münster, Domagkstr. 15, 48149, Münster, Deutschland
| |
Collapse
|
24
|
Li J, Jin P, Zhu J, Zou H, Xu X, Tang M, Zhou M, Gan Y, He J, Ling Y, Su Y. Multi-scale GCN-assisted two-stage network for joint segmentation of retinal layers and discs in peripapillary OCT images. BIOMEDICAL OPTICS EXPRESS 2021; 12:2204-2220. [PMID: 33996224 PMCID: PMC8086482 DOI: 10.1364/boe.417212] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 05/03/2023]
Abstract
An accurate and automated tissue segmentation algorithm for retinal optical coherence tomography (OCT) images is crucial for the diagnosis of glaucoma. However, due to the presence of the optic disc, the anatomical structure of the peripapillary region of the retina is complicated and is challenging for segmentation. To address this issue, we develop a novel graph convolutional network (GCN)-assisted two-stage framework to simultaneously label the nine retinal layers and the optic disc. Specifically, a multi-scale global reasoning module is inserted between the encoder and decoder of a U-shape neural network to exploit anatomical prior knowledge and perform spatial reasoning. We conduct experiments on human peripapillary retinal OCT images. We also provide public access to the collected dataset, which might contribute to the research in the field of biomedical image processing. The Dice score of the proposed segmentation network is 0.820 ± 0.001 and the pixel accuracy is 0.830 ± 0.002, both of which outperform those from other state-of-the-art techniques.
Collapse
Affiliation(s)
- Jiaxuan Li
- John Hopcroft Center for Computer Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peiyao Jin
- Department of Preventative Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai 200040, China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Jianfeng Zhu
- Department of Preventative Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai 200040, China
| | - Haidong Zou
- Department of Preventative Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai 200040, China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Xun Xu
- Department of Preventative Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai 200040, China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Min Tang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Minwen Zhou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Yu Gan
- Department of Electrical and Computer Engineering, The University of Alabama, AL 35487, USA
| | - Jiangnan He
- Department of Preventative Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai 200040, China
| | - Yuye Ling
- John Hopcroft Center for Computer Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yikai Su
- State Key Lab of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|