1
|
Turrini L, Ricci P, Sorelli M, de Vito G, Marchetti M, Vanzi F, Pavone FS. Two-photon all-optical neurophysiology for the dissection of larval zebrafish brain functional and effective connectivity. Commun Biol 2024; 7:1261. [PMID: 39367042 PMCID: PMC11452506 DOI: 10.1038/s42003-024-06731-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/13/2024] [Indexed: 10/06/2024] Open
Abstract
One of the most audacious goals of modern neuroscience is unraveling the complex web of causal relations underlying the activity of neuronal populations on a whole-brain scale. This endeavor, which was prohibitive only a couple of decades ago, has recently become within reach owing to the advancements in optical methods and the advent of genetically encoded indicators/actuators. These techniques, applied to the translucent larval zebrafish have enabled recording and manipulation of the activity of extensive neuronal populations spanning the entire vertebrate brain. Here, we present a custom two-photon optical system that couples light-sheet imaging and 3D excitation with acousto-optic deflectors for simultaneous high-speed volumetric recording and optogenetic stimulation. By employing a zebrafish line with pan-neuronal expression of both the calcium reporter GCaMP6s and the red-shifted opsin ReaChR, we implemented a crosstalk-free, noninvasive all-optical approach and applied it to reconstruct the functional and effective connectivity of the left habenula.
Collapse
Affiliation(s)
- Lapo Turrini
- National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy.
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy.
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy.
| | - Pietro Ricci
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- Department of Applied Physics, University of Barcelona, Barcelona, Spain
| | - Michele Sorelli
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
| | - Giuseppe de Vito
- National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | | | - Francesco Vanzi
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy.
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy.
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
2
|
Luu P, Nadtochiy A, Zanon M, Moreno N, Messina A, Petrazzini MEM, Torres Perez JV, Keomanee-Dizon K, Jones M, Brennan CH, Vallortigara G, Fraser SE, Truong TV. Neural Basis of Number Sense in Larval Zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610552. [PMID: 39290349 PMCID: PMC11406567 DOI: 10.1101/2024.08.30.610552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Number sense, the ability to discriminate the quantity of objects, is crucial for survival. To understand how neurons work together and develop to mediate number sense, we used two-photon fluorescence light sheet microscopy to capture the activity of individual neurons throughout the brain of larval Danio rerio, while displaying a visual number stimulus to the animal. We identified number-selective neurons as early as 3 days post-fertilization and found a proportional increase of neurons tuned to larger quantities after 3 days. We used machine learning to predict the stimulus from the neuronal activity and observed that the prediction accuracy improves with age. We further tested ethanol's effect on number sense and found a decrease in number-selective neurons in the forebrain, suggesting cognitive impairment. These findings are a significant step towards understanding neural circuits devoted to discrete magnitudes and our methodology to track single-neuron activity across the whole brain is broadly applicable to other fields in neuroscience.
Collapse
Affiliation(s)
- Peter Luu
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Anna Nadtochiy
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
- Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Mirko Zanon
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
| | - Noah Moreno
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
| | - Andrea Messina
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | | | - Jose Vicente Torres Perez
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, United Kingdom
| | - Kevin Keomanee-Dizon
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ, USA
| | - Matthew Jones
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
| | - Caroline H Brennan
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, United Kingdom
| | | | - Scott E Fraser
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
- Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Thai V Truong
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Luu P, Fraser SE, Schneider F. More than double the fun with two-photon excitation microscopy. Commun Biol 2024; 7:364. [PMID: 38531976 PMCID: PMC10966063 DOI: 10.1038/s42003-024-06057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
For generations researchers have been observing the dynamic processes of life through the lens of a microscope. This has offered tremendous insights into biological phenomena that span multiple orders of time- and length-scales ranging from the pure magic of molecular reorganization at the membrane of immune cells, to cell migration and differentiation during development or wound healing. Standard fluorescence microscopy techniques offer glimpses at such processes in vitro, however, when applied in intact systems, they are challenged by reduced signal strengths and signal-to-noise ratios that result from deeper imaging. As a remedy, two-photon excitation (TPE) microscopy takes a special place, because it allows us to investigate processes in vivo, in their natural environment, even in a living animal. Here, we review the fundamental principles underlying TPE aimed at basic and advanced microscopy users interested in adopting TPE for intravital imaging. We focus on applications in neurobiology, present current trends towards faster, wider and deeper imaging, discuss the combination with photon counting technologies for metabolic imaging and spectroscopy, as well as highlight outstanding issues and drawbacks in development and application of these methodologies.
Collapse
Affiliation(s)
- Peter Luu
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biological Sciences, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Scott E Fraser
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biological Sciences, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
- Alfred Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Falk Schneider
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA.
- Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
4
|
Sommernes JR, Millett-Sikking A, Ströhl F. S-polarized light-sheets improve resolution and light-efficiency in oblique plane microscopy. Sci Rep 2024; 14:3540. [PMID: 38347049 PMCID: PMC10861444 DOI: 10.1038/s41598-024-53900-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/06/2024] [Indexed: 02/15/2024] Open
Abstract
Oblique plane microscopy (OPM) offers 3D optically sectioned imaging with high spatial- and temporal-resolution while enabling conventional sample mounting. The technique uses a concatenation of three microscopes, two for remote focusing and a tilted tertiary microscope, often including an immersion objective, to image an oblique sample plane. This design induces Fresnel reflections and a reduced effective aperture, thus impacting the resolution and light efficiency of the system. Using vectorial diffraction simulations, the system performance was characterized based on illumination angle and polarization, signal to noise ratio, and refractive index of the tertiary objective immersion. We show that for samples with high fluorescent anisotropy, s-polarized light-sheets yield higher average resolution for all system configurations, as well as higher light-efficiency. We also provide a tool for performance characterization of arbitrary light-sheet imaging systems.
Collapse
Affiliation(s)
- Jon-Richard Sommernes
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Florian Ströhl
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
5
|
Huaroto JJ, Capuano L, Kaya M, Hlukhau I, Assayag F, Mohanty S, Römer GW, Misra S. Two-photon microscopy for microrobotics: Visualization of micro-agents below fixed tissue. PLoS One 2023; 18:e0289725. [PMID: 37561749 PMCID: PMC10414647 DOI: 10.1371/journal.pone.0289725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Optical microscopy is frequently used to visualize microrobotic agents (i.e., micro-agents) and physical surroundings with a relatively high spatio-temporal resolution. However, the limited penetration depth of optical microscopy techniques used in microrobotics (in the order of 100 μm) reduces the capability of visualizing micro-agents below biological tissue. Two-photon microscopy is a technique that exploits the principle of two-photon absorption, permitting live tissue imaging with sub-micron resolution and optical penetration depths (over 500 μm). The two-photon absorption principle has been widely applied to fabricate sub-millimeter scale components via direct laser writing (DLW). Yet, its use as an imaging tool for microrobotics remains unexplored in the state-of-the-art. This study introduces and reports on two-photon microscopy as an alternative technique for visualizing micro-agents below biological tissue. In order to validate two-photon image acquisition for microrobotics, two-type micro-agents are fabricated and employed: (1) electrospun fibers stained with an exogenous fluorophore and (2) bio-inspired structure printed with autofluorescent resin via DLW. The experiments are devised and conducted to obtain three-dimensional reconstructions of both micro-agents, perform a qualitative study of laser-tissue interaction, and visualize micro-agents along with tissue using second-harmonic generation. We experimentally demonstrate two-photon microscopy of micro-agents below formalin-fixed tissue with a maximum penetration depth of 800 μm and continuous imaging of magnetic electrospun fibers with one frame per second acquisition rate (in a field of view of 135 × 135 μm2). Our results show that two-photon microscopy can be an alternative imaging technique for microrobotics by enabling visualization of micro-agents under in vitro and ex ovo conditions. Furthermore, bridging the gap between two-photon microscopy and the microrobotics field has the potential to facilitate in vivo visualization of micro-agents.
Collapse
Affiliation(s)
- Juan J. Huaroto
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Luigi Capuano
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Mert Kaya
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
- Surgical Robotics Laboratory, Department of Biomedical Engineering, University Medical Centre Groningen and University of Groningen, Groningen, The Netherlands
| | - Ihar Hlukhau
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Franck Assayag
- Animal Facility, Technical Medical Centre (TechMed Centre) Infrastructure, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Sumit Mohanty
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
- Autonomous Matter Department, AMOLF, Amsterdam, The Netherlands
| | - Gert-willem Römer
- Chair of Laser Processing, Department of Mechanics of Solids, Surfaces & Systems (MS3), Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands
| | - Sarthak Misra
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
- Surgical Robotics Laboratory, Department of Biomedical Engineering, University Medical Centre Groningen and University of Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Turrini L, Roschi L, de Vito G, Pavone FS, Vanzi F. Imaging Approaches to Investigate Pathophysiological Mechanisms of Brain Disease in Zebrafish. Int J Mol Sci 2023; 24:9833. [PMID: 37372981 DOI: 10.3390/ijms24129833] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Zebrafish has become an essential model organism in modern biomedical research. Owing to its distinctive features and high grade of genomic homology with humans, it is increasingly employed to model diverse neurological disorders, both through genetic and pharmacological intervention. The use of this vertebrate model has recently enhanced research efforts, both in the optical technology and in the bioengineering fields, aiming at developing novel tools for high spatiotemporal resolution imaging. Indeed, the ever-increasing use of imaging methods, often combined with fluorescent reporters or tags, enable a unique chance for translational neuroscience research at different levels, ranging from behavior (whole-organism) to functional aspects (whole-brain) and down to structural features (cellular and subcellular). In this work, we present a review of the imaging approaches employed to investigate pathophysiological mechanisms underlying functional, structural, and behavioral alterations of human neurological diseases modeled in zebrafish.
Collapse
Affiliation(s)
- Lapo Turrini
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Lorenzo Roschi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Giuseppe de Vito
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Viale Gaetano Pieraccini 6, 50139 Florence, Italy
- Interdepartmental Centre for the Study of Complex Dynamics, University of Florence, Via Giovanni Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Via Giovanni Sansone 1, 50019 Sesto Fiorentino, Italy
- National Institute of Optics, National Research Council, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Francesco Vanzi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
7
|
Ye H, Xu X, Wang J, Wang J, He Y, Mu Y, Shi G. Polarization effects on the fluorescence emission of zebrafish neurons using light-sheet microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:6733-6744. [PMID: 36589590 PMCID: PMC9774877 DOI: 10.1364/boe.474588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Light-sheet fluorescence microscopy (LSFM) makes use of a thin plane of light to optically section and image transparent tissues or organisms in vivo, which has the advantages of fast imaging speed and low phototoxicity. In this paper, we have employed light-sheet microscopy to investigate the polarization effects on fluorescence emission of zebrafish neurons via modifying the electric oscillation orientation of the excitation light. The intensity of the fluorescence emission from the excited zebrafish larvae follows a cosine square function with respect to the polarization state of the excitation light and reveals a 40% higher fluorescence emission when the polarization orientation is orthogonal to the illumination and detection axes. Through registration and subtraction of fluorescence images under different polarization states, we have demonstrated that most of the enhanced fluorescence signals are from the neuronal cells rather than the extracellular substance. This provides us a way to distinguish the cell boundaries and observe the organism structures with improved contrast and resolution.
Collapse
Affiliation(s)
- Hong Ye
- Jiangsu Key Laboratory of Medical Optics,
Suzhou Institute of Biomedical Engineering and Technology,
Chinese Academy of Sciences, Suzhou,
China
| | - Xin Xu
- Jiangsu Key Laboratory of Medical Optics,
Suzhou Institute of Biomedical Engineering and Technology,
Chinese Academy of Sciences, Suzhou,
China
- School of Biomedical Engineering (Suzhou),
Division of Life Sciences and Medicine, University of
Science and Technology of China, Hefei, China
| | - Jixiang Wang
- Jiangsu Key Laboratory of Medical Optics,
Suzhou Institute of Biomedical Engineering and Technology,
Chinese Academy of Sciences, Suzhou,
China
- School of Biomedical Engineering (Suzhou),
Division of Life Sciences and Medicine, University of
Science and Technology of China, Hefei, China
| | - Jing Wang
- Jiangsu Key Laboratory of Medical Optics,
Suzhou Institute of Biomedical Engineering and Technology,
Chinese Academy of Sciences, Suzhou,
China
- School of Biomedical Engineering (Suzhou),
Division of Life Sciences and Medicine, University of
Science and Technology of China, Hefei, China
| | - Yi He
- Jiangsu Key Laboratory of Medical Optics,
Suzhou Institute of Biomedical Engineering and Technology,
Chinese Academy of Sciences, Suzhou,
China
| | - Yu Mu
- Institute of Neuroscience, State Key
Laboratory of Neuroscience, Center for Excellence in Brain Science and
Intelligence Technology, Chinese Academy of
Sciences, Shanghai, China
| | - Guohua Shi
- Jiangsu Key Laboratory of Medical Optics,
Suzhou Institute of Biomedical Engineering and Technology,
Chinese Academy of Sciences, Suzhou,
China
- School of Biomedical Engineering (Suzhou),
Division of Life Sciences and Medicine, University of
Science and Technology of China, Hefei, China
| |
Collapse
|
8
|
Mazumder A, Mozammal M, Talukder MA. Three-dimensional imaging of biological cells using surface plasmon coupled emission. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:106002. [PMID: 36203237 PMCID: PMC9535299 DOI: 10.1117/1.jbo.27.10.106002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
SIGNIFICANCE Biological cell imaging has become one of the most crucial research interests because of its applications in biomedical and microbiology studies. However, three-dimensional (3D) imaging of biological cells is critically challenging and often involves prohibitively expensive and complex equipment. Therefore, a low-cost imaging technique with a simpler optical arrangement is immensely needed. AIM The proposed approach will provide an accurate cell image at a low cost without needing any microscope or extensive processing of the collected data, often used in conventional imaging techniques. APPROACH We propose that patterns of surface plasmon coupled emission (SPCE) features from a fluorescently labeled biological cell can be used to image the cell. An imaging methodology has been developed and theoretically demonstrated to create 3D images of cells from the detected SPCE patterns. The 3D images created from the different SPCE properties at the far-field closely match the actual cell structures. RESULTS The developed technique has been applied to different regular and irregular cell shapes. In each case, the calculated root-mean-square error (RMSE) of the created images from the cell structures remains within a few percentages. Our work recreates the base of a circular-shaped cell with an RMSE of ≲1.4 % . In addition, the images of irregular-shaped cell bases have an RMSE of ≲2.8 % . Finally, we obtained a 3D image with an RMSE of ≲6.5 % for a random cellular structure. CONCLUSIONS Despite being in its initial stage of development, the proposed technique shows promising results considering its simplicity and the nominal cost it would require.
Collapse
Affiliation(s)
- Anik Mazumder
- Bangladesh University of Engineering and Technology, Department of Electrical and Electronic Engineering, Dhaka, Bangladesh
- United International University, Department of Computer Science and Engineering, Dhaka, Bangladesh
| | - Mohammad Mozammal
- Bangladesh University of Engineering and Technology, Department of Electrical and Electronic Engineering, Dhaka, Bangladesh
| | - Muhammad Anisuzzaman Talukder
- Bangladesh University of Engineering and Technology, Department of Electrical and Electronic Engineering, Dhaka, Bangladesh
| |
Collapse
|
9
|
Turrini L, Sorelli M, de Vito G, Credi C, Tiso N, Vanzi F, Pavone FS. Multimodal Characterization of Seizures in Zebrafish Larvae. Biomedicines 2022; 10:951. [PMID: 35625689 PMCID: PMC9139036 DOI: 10.3390/biomedicines10050951] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/07/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
Epilepsy accounts for a significant proportion of the world's disease burden. Indeed, many research efforts are produced both to investigate the basic mechanism ruling its genesis and to find more effective therapies. In this framework, the use of zebrafish larvae, owing to their peculiar features, offers a great opportunity. Here, we employ transgenic zebrafish larvae expressing GCaMP6s in all neurons to characterize functional alterations occurring during seizures induced by pentylenetetrazole. Using a custom two-photon light-sheet microscope, we perform fast volumetric functional imaging of the entire larval brain, investigating how different brain regions contribute to seizure onset and propagation. Moreover, employing a custom behavioral tracking system, we outline the progressive alteration of larval swim kinematics, resulting from different grades of seizures. Collectively, our results show that the epileptic larval brain undergoes transitions between diverse neuronal activity regimes. Moreover, we observe that different brain regions are progressively recruited into the generation of seizures of diverse severity. We demonstrate that midbrain regions exhibit highest susceptibility to the convulsant effects and that, during periods preceding abrupt hypersynchronous paroxysmal activity, they show a consistent increase in functional connectivity. These aspects, coupled with the hub-like role that these regions exert, represent important cues in their identification as epileptogenic hubs.
Collapse
Affiliation(s)
- Lapo Turrini
- Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino, Italy;
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; (G.d.V.); (C.C.); (F.V.)
| | - Michele Sorelli
- Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino, Italy;
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; (G.d.V.); (C.C.); (F.V.)
| | - Giuseppe de Vito
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; (G.d.V.); (C.C.); (F.V.)
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Caterina Credi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; (G.d.V.); (C.C.); (F.V.)
- National Institute of Optics, National Research Council, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Natascia Tiso
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy;
| | - Francesco Vanzi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; (G.d.V.); (C.C.); (F.V.)
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino, Italy;
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; (G.d.V.); (C.C.); (F.V.)
- National Institute of Optics, National Research Council, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
10
|
Dzung A, Saltari A, Tiso N, Lyck R, Dummer R, Levesque MP. STK11 Prevents Invasion through Signal Transducer and Activator of Transcription 3/5 and FAK Repression in Cutaneous Melanoma. J Invest Dermatol 2022; 142:1171-1182.e10. [PMID: 34757069 DOI: 10.1016/j.jid.2021.09.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 11/18/2022]
Abstract
The STK11/LKB1 is a tumor suppressor involved in metabolism and cell motility. In BRAFV600E melanoma, STK11 is inactivated by extracellular signal‒regulated kinase and RSK, preventing it from binding and activating adenosine monophosphate-activated protein kinase and promoting melanoma cell proliferation. Although STK11 mutations occur in 5‒10% of cutaneous melanoma, few functional studies have been performed. By knocking out STK11 with CRISPR/Cas9 in two human BRAF-mutant melanoma cell lines, we found that STK11 loss reduced the sensitivity to a BRAF inhibitor. More strikingly, STK11 loss led to an increased invasive phenotype in both three-dimensional spheroids and in vivo zebrafish xenograft models. STK11 overexpression consistently reversed the invasive phenotype. Interestingly, STK11 knockout increased invasion also in an NRAS-mutant melanoma cell line. Furthermore, although STK11 was expressed in primary human melanoma tumors, its expression significantly decreased in melanoma metastases, especially in brain metastases. In the STK11-knockout cells, we observed increased activating phosphorylation of signal transducer and activator of transcription 3/5 and FAK. Using inhibitors of signal transducer and activator of transcription 3/5 and FAK, we reversed the invasive phenotype in both BRAF- and NRAS-mutated cells. Our findings confirm an increased invasive phenotype on STK11 inactivation in BRAF- and NRAS-mutant cutaneous melanoma that can be targeted by signal transducer and activator of transcription 3/5 and FAK inhibition.
Collapse
Affiliation(s)
- Andreas Dzung
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Annalisa Saltari
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Natascia Tiso
- Laboratory of Developmental Genetics, Department of Biology, University of Padova, Padova, Italy
| | - Ruth Lyck
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
de Vito G, Turrini L, Müllenbroich C, Ricci P, Sancataldo G, Mazzamuto G, Tiso N, Sacconi L, Fanelli D, Silvestri L, Vanzi F, Pavone FS. Fast whole-brain imaging of seizures in zebrafish larvae by two-photon light-sheet microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:1516-1536. [PMID: 35414999 PMCID: PMC8973167 DOI: 10.1364/boe.434146] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 05/27/2023]
Abstract
Light-sheet fluorescence microscopy (LSFM) enables real-time whole-brain functional imaging in zebrafish larvae. Conventional one-photon LSFM can however induce undesirable visual stimulation due to the use of visible excitation light. The use of two-photon (2P) excitation, employing near-infrared invisible light, provides unbiased investigation of neuronal circuit dynamics. However, due to the low efficiency of the 2P absorption process, the imaging speed of this technique is typically limited by the signal-to-noise-ratio. Here, we describe a 2P LSFM setup designed for non-invasive imaging that enables quintuplicating state-of-the-art volumetric acquisition rate of the larval zebrafish brain (5 Hz) while keeping low the laser intensity on the specimen. We applied our system to the study of pharmacologically-induced acute seizures, characterizing the spatial-temporal dynamics of pathological activity and describing for the first time the appearance of caudo-rostral ictal waves (CRIWs).
Collapse
Affiliation(s)
- Giuseppe de Vito
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child Health, Viale Pieraccini 6, Florence, Italy, 50139, Italy
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- Co-first authors with equal contribution
| | - Lapo Turrini
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- University of Florence, Department of Physics and Astronomy, Via Sansone 1, Sesto Fiorentino 50019, Italy
- Co-first authors with equal contribution
| | - Caroline Müllenbroich
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- School of Physics and Astronomy, Kelvin Building, University of Glasgow, G12 8QQ, Glasgow, UK
- National Institute of Optics, National Research Council, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
| | - Pietro Ricci
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
| | - Giuseppe Sancataldo
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- University of Florence, Department of Physics and Astronomy, Via Sansone 1, Sesto Fiorentino 50019, Italy
| | - Giacomo Mazzamuto
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- National Institute of Optics, National Research Council, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
| | - Natascia Tiso
- University of Padova, Department of Biology, Via U. Bassi 58/B, Padova 35131, Italy
| | - Leonardo Sacconi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- National Institute of Optics, National Research Council, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
| | - Duccio Fanelli
- University of Florence, Department of Physics and Astronomy, Via Sansone 1, Sesto Fiorentino 50019, Italy
| | - Ludovico Silvestri
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- University of Florence, Department of Physics and Astronomy, Via Sansone 1, Sesto Fiorentino 50019, Italy
- National Institute of Optics, National Research Council, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
| | - Francesco Vanzi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- University of Florence, Department of Biology, Via Madonna del Piano 6, Sesto Fiorentino 50019, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- University of Florence, Department of Physics and Astronomy, Via Sansone 1, Sesto Fiorentino 50019, Italy
- National Institute of Optics, National Research Council, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
| |
Collapse
|
12
|
Pulin M, Stockhausen KE, Masseck OA, Kubitschke M, Busse B, Wiegert JS, Oertner TG. Orthogonally-polarized excitation for improved two-photon and second-harmonic-generation microscopy, applied to neurotransmitter imaging with GPCR-based sensors. BIOMEDICAL OPTICS EXPRESS 2022; 13:777-790. [PMID: 35284188 PMCID: PMC8884218 DOI: 10.1364/boe.448760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Fluorescent proteins are excited by light that is polarized parallel to the dipole axis of the chromophore. In two-photon microscopy, polarized light is used for excitation. Here we reveal surprisingly strong polarization sensitivity in a class of genetically encoded, GPCR-based neurotransmitter sensors. In tubular structures such as dendrites, this effect led to a complete loss of membrane signal in dendrites running parallel to the polarization direction of the excitation beam. To reduce the sensitivity to dendritic orientation, we designed an optical device that generates interleaved pulse trains of orthogonal polarization. The passive device, which we inserted in the beam path of an existing two-photon microscope, removed the strong direction bias from fluorescence and second-harmonic (SHG) images. We conclude that for optical measurements of transmitter concentration with GPCR-based sensors, orthogonally polarized excitation is essential.
Collapse
Affiliation(s)
- Mauro Pulin
- Institute for Synaptic Physiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Research Group Synaptic Wiring and Information Processing, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Kilian E. Stockhausen
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Olivia A. Masseck
- Synthetic Biology, University of Bremen, Leobener Str. 5, 28359 Bremen, Germany
| | - Martin Kubitschke
- Synthetic Biology, University of Bremen, Leobener Str. 5, 28359 Bremen, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - J. Simon Wiegert
- Research Group Synaptic Wiring and Information Processing, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Thomas G. Oertner
- Institute for Synaptic Physiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
13
|
Ricci P, Gavryusev V, Müllenbroich C, Turrini L, de Vito G, Silvestri L, Sancataldo G, Pavone FS. Removing striping artifacts in light-sheet fluorescence microscopy: a review. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 168:52-65. [PMID: 34274370 DOI: 10.1016/j.pbiomolbio.2021.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/21/2021] [Accepted: 07/12/2021] [Indexed: 11/24/2022]
Abstract
In recent years, light-sheet fluorescence microscopy (LSFM) has found a broad application for imaging of diverse biological samples, ranging from sub-cellular structures to whole animals, both in-vivo and ex-vivo, owing to its many advantages relative to point-scanning methods. By providing the selective illumination of sample single planes, LSFM achieves an intrinsic optical sectioning and direct 2D image acquisition, with low out-of-focus fluorescence background, sample photo-damage and photo-bleaching. On the other hand, such an illumination scheme is prone to light absorption or scattering effects, which lead to uneven illumination and striping artifacts in the images, oriented along the light sheet propagation direction. Several methods have been developed to address this issue, ranging from fully optical solutions to entirely digital post-processing approaches. In this work, we present them, outlining their advantages, performance and limitations.
Collapse
Affiliation(s)
- Pietro Ricci
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, 50019, Italy; University of Florence, Department of Physics and Astronomy, Sesto Fiorentino, 50019, Italy
| | - Vladislav Gavryusev
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, 50019, Italy; University of Florence, Department of Physics and Astronomy, Sesto Fiorentino, 50019, Italy
| | | | - Lapo Turrini
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, 50019, Italy; University of Florence, Department of Physics and Astronomy, Sesto Fiorentino, 50019, Italy
| | - Giuseppe de Vito
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, 50019, Italy; University of Florence, Department of Neuroscience, Psychology, Drug Research and Child Health, Florence, 50139, Italy
| | - Ludovico Silvestri
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, 50019, Italy; University of Florence, Department of Physics and Astronomy, Sesto Fiorentino, 50019, Italy; National Institute of Optics, National Research Council, Sesto Fiorentino, 50019, Italy
| | - Giuseppe Sancataldo
- University of Palermo, Department of Physics and Chemistry, Palermo, 90128, Italy.
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, 50019, Italy; University of Florence, Department of Physics and Astronomy, Sesto Fiorentino, 50019, Italy; National Institute of Optics, National Research Council, Sesto Fiorentino, 50019, Italy.
| |
Collapse
|
14
|
Chicchi L, Cecchini G, Adam I, de Vito G, Livi R, Pavone FS, Silvestri L, Turrini L, Vanzi F, Fanelli D. Reconstruction scheme for excitatory and inhibitory dynamics with quenched disorder: application to zebrafish imaging. J Comput Neurosci 2021; 49:159-174. [PMID: 33826050 PMCID: PMC8046699 DOI: 10.1007/s10827-020-00774-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 11/30/2022]
Abstract
An inverse procedure is developed and tested to recover functional and structural information from global signals of brains activity. The method assumes a leaky-integrate and fire model with excitatory and inhibitory neurons, coupled via a directed network. Neurons are endowed with a heterogenous current value, which sets their associated dynamical regime. By making use of a heterogenous mean-field approximation, the method seeks to reconstructing from global activity patterns the distribution of in-coming degrees, for both excitatory and inhibitory neurons, as well as the distribution of the assigned currents. The proposed inverse scheme is first validated against synthetic data. Then, time-lapse acquisitions of a zebrafish larva recorded with a two-photon light sheet microscope are used as an input to the reconstruction algorithm. A power law distribution of the in-coming connectivity of the excitatory neurons is found. Local degree distributions are also computed by segmenting the whole brain in sub-regions traced from annotated atlas.
Collapse
Affiliation(s)
- Lorenzo Chicchi
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Florence, Italy.,CSDC, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Gloria Cecchini
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Florence, Italy. .,CSDC, University of Florence, Sesto Fiorentino, Florence, Italy.
| | - Ihusan Adam
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Florence, Italy.,CSDC, University of Florence, Sesto Fiorentino, Florence, Italy.,Department of Information Engineering, University of Florence, Florence, Italy
| | - Giuseppe de Vito
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Florence, Italy.,Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Roberto Livi
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Florence, Italy.,CSDC, University of Florence, Sesto Fiorentino, Florence, Italy.,INFN Sezione di Firenze, Sesto Fiorentino, Florence, Italy
| | - Francesco Saverio Pavone
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Florence, Italy.,European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Florence, Italy.,National Institute of Optics, National Research Councily, Sesto Fiorentino, Florence, Italy
| | - Ludovico Silvestri
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Florence, Italy.,European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Florence, Italy.,National Institute of Optics, National Research Councily, Sesto Fiorentino, Florence, Italy
| | - Lapo Turrini
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Florence, Italy.,European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Florence, Italy
| | - Francesco Vanzi
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Florence, Italy.,Department of Biology, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Duccio Fanelli
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Florence, Italy.,CSDC, University of Florence, Sesto Fiorentino, Florence, Italy.,INFN Sezione di Firenze, Sesto Fiorentino, Florence, Italy
| |
Collapse
|