1
|
Wang Y, Li S, Wang Y, Yan Q, Wang X, Shen Y, Li Z, Kang F, Cao X, Zhu S. Compact fiber-free parallel-plane multi-wavelength diffuse optical tomography system for breast imaging. OPTICS EXPRESS 2022; 30:6469-6486. [PMID: 35299431 DOI: 10.1364/oe.448874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
To facilitate the clinical applicability of the diffuse optical inspection device, a compact multi-wavelength diffuse optical tomography system for breast imaging (compact-DOTB) with a fiber-free parallel-plane structure was designed and fabricated for acquiring three-dimensional optical properties of the breast in continuous-wave mode. The source array consists of 56 surface-mounted micro light-emitting diodes (LEDs), each integrating three wavelengths (660, 750, and 840 nm). The detector array is arranged with 56 miniaturized surface-mounted optical sensors, each encapsulating a high-sensitivity photodiode (PD) and a low-noise current amplifier with a gain of 24×. The system provides 3,136 pairs of source-detector measurements at each wavelength, and the fiber-free design largely ensures consistency between source/detection channels while effectively reducing the complexity of system operation and maintenance. We have evaluated the compact-DOTB system's characteristics and demonstrated its performance in terms of reconstruction positioning accuracy and recovery contrast with breast-sized phantom experiments. Furthermore, the breast cancer patient studies have been carried out, and the quantitative results indicate that the compact-DOTB system is able to observe the changes in the functional tissue components of the breast after receiving the neoadjuvant chemotherapy (NAC), demonstrating the great potential of the proposed compact system for clinical applications, while its cost and ease of operation are competitive with the existing breast-DOT devices.
Collapse
|
2
|
Evaluation of Mannitol Intervention Effects on Ischemic Cerebral Edema in Mice Using Swept Source Optical Coherence Tomography. PHOTONICS 2022. [DOI: 10.3390/photonics9020081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cerebral edema is a serious complication of ischemic cerebrovascular disease and mannitol is a commonly used dehydrating agent for relieving cerebral edema. However, the edema state and surrounding vascular perfusion level during mannitol treatment remains unclear, which affects the clinical application of the medicine. In this paper, we demonstrated the role of swept-source optical coherence tomography (OCT) in the evaluation of mannitol efficacy using mouse models. The OCT-based angiography and attenuation imaging technology were used to obtain the cerebral vascular perfusion level and cerebral edema state at different times. Vascular parameters and edema parameters were quantified and compared. Experimental results show that mannitol can significantly reduce the water content in the central region of edema, effectively inhibiting the rapid growth of the edema area, and restoring cerebral blood flow. On average, the edema area decreased by 33% after 2 h, and the vascular perfusion density increased by 12% after 5 h. This work helps to provide a valuable theoretical basis and research ideas for the clinical treatment of cerebral edema.
Collapse
|
3
|
Lee YH, Kuo PW, Chen CJ, Sue CJ, Hsu YF, Pan MC. Indocyanine Green-Camptothecin Co-Loaded Perfluorocarbon Double-Layer Nanocomposite: A Versatile Nanotheranostics for Photochemotherapy and FDOT Diagnosis of Breast Cancer. Pharmaceutics 2021; 13:pharmaceutics13091499. [PMID: 34575572 PMCID: PMC8466706 DOI: 10.3390/pharmaceutics13091499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 01/10/2023] Open
Abstract
Breast cancer remains the most frequently diagnosed cancer and is the leading cause of neoplastic disease burden for females worldwide, suggesting that effective therapeutic and/or diagnostic strategies are still urgently needed. In this study, a type of indocyanine green (ICG) and camptothecin (CPT) co-loaded perfluorocarbon double-layer nanocomposite named ICPNC was developed for detection and photochemotherapy of breast cancer. The ICPNCs were designed to be surface modifiable for on-demand cell targeting and can serve as contrast agents for fluorescence diffuse optical tomography (FDOT). Upon near infrared (NIR) irradiation, the ICPNCs can generate a significantly increased production of singlet oxygen compared to free ICG, and offer a comparable cytotoxicity with reduced chemo-drug dosage. Based on the results of animal study, we further demonstrated that the ICPNCs ([ICG]/[CPT] = 40-/7.5-μM) in association with 1-min NIR irradiation (808 nm, 6 W/cm2) can provide an exceptional anticancer effect to the MDA-MB-231 tumor-bearing mice whereby the tumor size was significantly reduced by 80% with neither organ damage nor systemic toxicity after a 21-day treatment. Given a number of aforementioned merits, we anticipate that the developed ICPNC is a versatile theranostic nanoagent which is highly promising to be used in the clinic.
Collapse
Affiliation(s)
- Yu-Hsiang Lee
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City 320317, Taiwan; (P.-W.K.); (C.-J.C.); (C.-J.S.)
- Department of Chemical and Materials Engineering, National Central University, Taoyuan City 320317, Taiwan
- Correspondence: (Y.-H.L.); (M.-C.P.); Tel.: +886-3-422-7151 (ext. 27755) (Y.-H.L.); +886-3-422-7151 (ext. 34312) (M.-C.P.)
| | - Po-Wei Kuo
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City 320317, Taiwan; (P.-W.K.); (C.-J.C.); (C.-J.S.)
| | - Chun-Ju Chen
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City 320317, Taiwan; (P.-W.K.); (C.-J.C.); (C.-J.S.)
| | - Chu-Jih Sue
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City 320317, Taiwan; (P.-W.K.); (C.-J.C.); (C.-J.S.)
| | - Ya-Fen Hsu
- Department of Surgery, Landseed International Hospital, Taoyuan City 324609, Taiwan;
| | - Min-Chun Pan
- Department of Mechanical Engineering, National Central University, Taoyuan City 320317, Taiwan
- Correspondence: (Y.-H.L.); (M.-C.P.); Tel.: +886-3-422-7151 (ext. 27755) (Y.-H.L.); +886-3-422-7151 (ext. 34312) (M.-C.P.)
| |
Collapse
|
4
|
Abstract
This article reviews the past and current statuses of time-domain near-infrared spectroscopy (TD-NIRS) and imaging. Although time-domain technology is not yet widely employed due to its drawbacks of being cumbersome, bulky, and very expensive compared to commercial continuous wave (CW) and frequency-domain (FD) fNIRS systems, TD-NIRS has great advantages over CW and FD systems because time-resolved data measured by TD systems contain the richest information about optical properties inside measured objects. This article focuses on reviewing the theoretical background, advanced theories and methods, instruments, and studies on clinical applications for TD-NIRS including some clinical studies which used TD-NIRS systems. Major events in the development of TD-NIRS and imaging are identified and summarized in chronological tables and figures. Finally, prospects for TD-NIRS in the near future are briefly described.
Collapse
|
5
|
Zhang W, Romero IO, Li C. Time domain X-ray luminescence computed tomography: numerical simulations. BIOMEDICAL OPTICS EXPRESS 2019; 10:372-383. [PMID: 30775106 PMCID: PMC6363188 DOI: 10.1364/boe.10.000372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
X-ray luminescence computed tomography (XLCT) has the potential to image the biodistribution of nanoparticles inside deep tissues. In XLCT, X-ray excitable nanophosphors emit optical photons for tomographic imaging. The lifetime of the nanophosphor signal, rather than its intensity, could be used to extract biological microenvironment information such as oxygenation in deep tumors. In this study, we propose the design, the forward model, and the reconstruction algorithm of a time domain XLCT for lifetime imaging with high spatial resolution. We have investigated the feasibility of the proposed design with numerical simulations. We found that the reconstructed lifetime images are robust to noise levels up to 5% and to unknown optical properties up to 4 times of absorption and scattering coefficients.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Ignacio O. Romero
- Department of Bioengineering, University of California, Merced, Merced, CA 95343, USA
| | - Changqing Li
- Department of Bioengineering, University of California, Merced, Merced, CA 95343, USA
| |
Collapse
|
6
|
Wang Y, Li J, Lu T, Zhang L, Zhou Z, Zhao H, Gao F. Combined diffuse optical tomography and photoacoustic tomography for enhanced functional imaging of small animals: a methodological study on phantoms. APPLIED OPTICS 2017; 56:303-311. [PMID: 28085867 DOI: 10.1364/ao.56.000303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Hybrid imaging methods combining diffuse optical tomography (DOT) and other anatomical or nonoptical functional modalities have been widely investigated to improve imaging performance degraded by the strong optical scattering of biological tissues, through constraining the reconstruction process by prior structures. However, these modalities with different contrast mechanisms may be ineffective in revealing early-staged lesions with high optical contrast but no morphological changes. Photoacoustic tomography (PAT) is particularly useful for visualizing light-absorbing structures embedded in soft tissues with high spatial resolution. Although it is still challenging for PAT to quantitatively disclose the absorption distribution, the modality does provide reliable and specific a priori information differentiating light-absorbing structures of soft tissues and might be more appropriate to guide DOT in lesion diagnosis, as compared with other anatomical or nonoptical functional modalities. In this study, a PAT-guided DOT approach is introduced with both soft- and hard-prior regularizations. The methodology is experimentally validated on small-animal-sized phantoms using a computed-tomography-analogous (CT-analogous) PAT/DOT dual-modality system, focusing on future whole-body applications. The results show that the proposed scheme is capable of effectively improving the quantitative accuracy and spatial resolution of DOT reconstruction.
Collapse
|
7
|
Zou W, Wang J, Hu D, Wang W. A reconstruction approach in wavelet domain for fluorescent molecular tomography via rotated sources illumination. Biomed Eng Online 2015; 14:86. [PMID: 26419738 PMCID: PMC4589093 DOI: 10.1186/s12938-015-0080-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/10/2015] [Indexed: 11/23/2022] Open
Abstract
Background Fluorescent molecular tomography (FMT) aims at reconstructing the spatial map of optical and fluorescence parameters from fluence measurements. Basically, solving large-scale matrix equations is computationally expensive for image reconstruction of FMT. Despite the reconstruction quality can be improved with more sources, it may result in higher computational costs for reconstruction. This article presents a novel method in the wavelet domain with rotated sources illumination. Methods We use the finite element method for the computation of the forward model. The global inverse problem is solved based on wavelet in conjunction with principal component analysis. The iterative reconstruction is implemented with sources rotated in a certain angle. The original excitation light sources are used to reconstruct the image in the first iteration. Then, upon the sources are rotated by a certain angle, they are employed for the next iteration of reconstruction. Results Simulation results demonstrate that our method can considerably reduce the time taken for the computation of inverse problem in FMT. Furthermore, the approach proposed is also shown to largely outperform the traditional method in terms of the precision of inverse solutions. Conclusions Our method has the capability to locate the inclusions. The proposed method can significantly speed up the reconstruction process with the high reconstruction quality.
Collapse
Affiliation(s)
- Wei Zou
- School of Electronic and Information Engineering, Soochow University, Suzhou, 215006, China. .,Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong. .,School of Information Technologies, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Jiajun Wang
- School of Electronic and Information Engineering, Soochow University, Suzhou, 215006, China. .,Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong. .,School of Information Technologies, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Danfeng Hu
- School of Electronic and Information Engineering, Soochow University, Suzhou, 215006, China.
| | - Wenxia Wang
- School of Electronic and Information Engineering, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
8
|
Chen X, Sun F, Yang D, Ren S, Zhang Q, Liang J. Hybrid simplified spherical harmonics with diffusion equation for light propagation in tissues. Phys Med Biol 2015; 60:6305-22. [DOI: 10.1088/0031-9155/60/16/6305] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Yi X, Wang B, Wan W, Wang Y, Zhang Y, Zhao H, Gao F. Full time-resolved diffuse fluorescence tomography accelerated with parallelized Fourier-series truncated diffusion approximation. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:56003. [PMID: 25965088 DOI: 10.1117/1.jbo.20.5.056003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/17/2015] [Indexed: 06/04/2023]
Abstract
Of the three measurement schemes established for diffuse fluorescence tomography (DFT), the time-domain scheme is well known to provide the richest information about the distribution of the targeting fluorophore in living tissues. However, the explicit use of the full time-resolved data usually leads to a considerably lengthy time for image reconstruction, limiting its applications to three-dimensional or small-volume imaging. To cope with the adversity, we propose herein a computationally efficient scheme for DFT image reconstruction where the time-dependent photon density is expanded to a Fourier-series and calculated by solving the independent frequency-domain diffusion equations at multiple sampling frequencies with the support of a combined multicore CPU-based coarse-grain and multithread GPU-based fine-grain parallelization strategy. With such a parallelized Fourier-series truncated diffusion approximation, both the time- and frequency-domain inversion procedures are developed and validated for their effectiveness and accuracy using simulative and phantom experiments. The results show that the proposed method can generate reconstructions comparable to the explicit time-domain scheme, with significantly reduced computational time.
Collapse
Affiliation(s)
- Xi Yi
- Tianjin University, College of Precision Instrument and Optoelectronics Engineering, Weijinlu Avenue #92, Tianjin 300072, China
| | - Bingyuan Wang
- Tianjin University, College of Precision Instrument and Optoelectronics Engineering, Weijinlu Avenue #92, Tianjin 300072, China
| | - Wenbo Wan
- Tianjin University, College of Precision Instrument and Optoelectronics Engineering, Weijinlu Avenue #92, Tianjin 300072, China
| | - Yihan Wang
- Tianjin University, College of Precision Instrument and Optoelectronics Engineering, Weijinlu Avenue #92, Tianjin 300072, China
| | - Yanqi Zhang
- Tianjin University, College of Precision Instrument and Optoelectronics Engineering, Weijinlu Avenue #92, Tianjin 300072, China
| | - Huijuan Zhao
- Tianjin University, College of Precision Instrument and Optoelectronics Engineering, Weijinlu Avenue #92, Tianjin 300072, ChinabTianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin 300072, China
| | - Feng Gao
- Tianjin University, College of Precision Instrument and Optoelectronics Engineering, Weijinlu Avenue #92, Tianjin 300072, ChinabTianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin 300072, China
| |
Collapse
|
10
|
Piao D. Photon diffusion in a homogeneous medium bounded externally or internally by an infinitely long circular cylindrical applicator. VI. Time-domain analysis. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2014; 31:2232-43. [PMID: 25401250 DOI: 10.1364/josaa.31.002232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Part VI analytically examines time-domain (TD) photon diffusion in a homogeneous medium enclosed by a "concave" circular cylindrical applicator or enclosing a "convex" circular cylindrical applicator, both geometries being infinite in the longitudinal dimension. The aim is to assess characteristics of TD photon diffusion, in response to a spatially and temporally impulsive source, versus the line-of-sight source-detector distance along the azimuthal or longitudinal direction on the concave or convex medium-applicator interface. By comparing to their counterparts evaluated along a straight line on a semi-infinite medium-applicator interface versus the same source-detector distance, the following patterns are indicated: (1) the peak photon fluence rate is always reached sooner in concave and later in convex geometry; (2) the peak photon fluence rate decreases slower along the azimuthal and faster along the longitudinal direction on the concave interface, and conversely on the convex interface; (3) the total photon fluence decreases slower along the azimuthal and faster along the longitudinal direction on the concave interface, and conversely on the convex interface; (4) the ratio between the peak photon fluence rate and the total fluence is always greater in concave geometry and smaller in convex geometry. The total fluence is equivalent to the steady-state photon fluence analyzed in Part I [J. Opt. Soc. Am. A27, 648 (2010)10.1364/JOSAA.27.000648JOAOD61084-7529]. The patterns of peak fluence rate, time to reaching peak fluence rate, and the ratio of these two, correspond to those of AC amplitude, phase, and modulation depth of frequency-domain results demonstrated in Part IV [J. Opt. Soc. Am. A29, 1445 (2012)10.1364/JOSAA.29.001445JOAOD61084-7529].
Collapse
|
11
|
Yi X, Wang X, Chen W, Wan W, Zhao H, Gao F. Full domain-decomposition scheme for diffuse optical tomography of large-sized tissues with a combined CPU and GPU parallelization. APPLIED OPTICS 2014; 53:2754-2765. [PMID: 24921857 DOI: 10.1364/ao.53.002754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/16/2014] [Indexed: 06/03/2023]
Abstract
The common approach to diffuse optical tomography is to solve a nonlinear and ill-posed inverse problem using a linearized iteration process that involves repeated use of the forward and inverse solvers on an appropriately discretized domain of interest. This scheme normally brings severe computation and storage burdens to its applications on large-sized tissues, such as breast tumor diagnosis and brain functional imaging, and prevents from using the matrix-fashioned linear inversions for improved image quality. To cope with the difficulties, we propose in this paper a parallelized full domain-decomposition scheme, which divides the whole domain into several overlapped subdomains and solves the corresponding subinversions independently within the framework of the Schwarz-type iterations, with the support of a combined multicore CPU and multithread graphics processing unit (GPU) parallelization strategy. The numerical and phantom experiments both demonstrate that the proposed method can effectively reduce the computation time and memory occupation for the large-sized problem and improve the quantitative performance of the reconstruction.
Collapse
|