1
|
Freitas RB, Rodrigues MJLF, Pimenta S, Belsley M, Correia JH, Maciel MJ. Highly-selective optical filter for NADH fluorescence detection in multiphoton microscopy. BIOMEDICAL OPTICS EXPRESS 2024; 15:3317-3328. [PMID: 38855678 PMCID: PMC11161364 DOI: 10.1364/boe.506777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 06/11/2024]
Abstract
Colorectal cancer (CRC) is a pressing global health concern, emphasizing the need for early detection tools. In this study an optical filter for precise detection of nicotinamide adenine dinucleotide (NADH) fluorescence via two-photon excitation fluorescence (TPEF) was developed. Fabricated with silicon dioxide and titanium dioxide thin films in a Fabry-Perot structure, the filter achieved a peak transmittance of about 95% at 483 nm, with a 12 nm full-width at half maximum. TPEF measurements using a tailored setup and NADH liquid phantoms underscored the filter's significance in selectively capturing NADH fluorescence while mitigating interference from other fluorophores. This work marks a substantial stride towards integrating multiphoton microscopy into conventional colonoscopy, enabling non-invasive, objective optical biopsy for colorectal tissue analysis. Further refinements of the experimental setup are imperative to advance tissue differentiation and enhance CRC diagnosis.
Collapse
Affiliation(s)
- R. B. Freitas
- CMEMS-UMinho, University of Minho, 4800-058, Guimarães, Portugal
| | - M. J. L. F. Rodrigues
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Laboratory for Materials and Emergent Technologies (LAPMET), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - S. Pimenta
- CMEMS-UMinho, University of Minho, 4800-058, Guimarães, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| | - M. Belsley
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Laboratory for Materials and Emergent Technologies (LAPMET), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - J. H. Correia
- CMEMS-UMinho, University of Minho, 4800-058, Guimarães, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| | - M. J. Maciel
- CMEMS-UMinho, University of Minho, 4800-058, Guimarães, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
2
|
Li L, Hong S, Kang D, Huang X, Zhang S, Zhang Z, Zhou Y, Chen J. Two-photon imaging reveals histopathological changes in the gastric tumor microenvironment induced by neoadjuvant treatment. BIOMEDICAL OPTICS EXPRESS 2023; 14:5085-5096. [PMID: 37854573 PMCID: PMC10581806 DOI: 10.1364/boe.501519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/27/2023] [Accepted: 09/01/2023] [Indexed: 10/20/2023]
Abstract
There is a close association between tumor response and survival in gastric cancer patients after receiving neoadjuvant treatment. An accurate and rapid assessment of therapeutic efficacy would be helpful for subsequent treatments and individual prognosis. At present, pathological examination is the gold standard for evaluating treatment response, however, it requires additional staining and the process is tedious, labor-intensive, as well as time-consuming. Here, we introduce a label-free imaging technique, two-photon imaging, to evaluate histopathological changes induced by pre-operative therapy, with a focus on assessing tumor regression as well as stromal response. Imaging data show that two-photon imaging allows label-free, rapid visualization of various aspects of pathological alterations in tumor microenvironment such as fibrotic reaction, inflammatory cell infiltration, mucinous response, isolated residual tumor cells. Moreover, a semi-automatic image processing approach is developed to extract the collagen morphological features, and statistical results show that there are significant differences in collagen area, length, width, cross-link space between the gastric cancer tissues with and without treatment. With the advent of a portable, miniaturized two-photon imaging device, we have enough reason to believe that this technique will become as an important auxiliary diagnostic tool in assessing neoadjuvant treatment response and thereby tailoring the most appropriate therapy strategies for the patients.
Collapse
Affiliation(s)
- Lianhuang Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Shichai Hong
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Department of Vascular Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China
| | - Deyong Kang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Xingxin Huang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Shichao Zhang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Zhenlin Zhang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Yongjian Zhou
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Jianxin Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
3
|
Picon A, Terradillos E, Sánchez-Peralta LF, Mattana S, Cicchi R, Blover BJ, Arbide N, Velasco J, Etzezarraga MC, Pavone FS, Garrote E, Saratxaga CL. Novel Pixelwise Co-Registered Hematoxylin-Eosin and Multiphoton Microscopy Image Dataset for Human Colon Lesion Diagnosis. J Pathol Inform 2022; 13:100012. [PMID: 35223136 PMCID: PMC8855324 DOI: 10.1016/j.jpi.2022.100012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/09/2022] [Indexed: 12/29/2022] Open
Abstract
Colorectal cancer presents one of the most elevated incidences of cancer worldwide. Colonoscopy relies on histopathology analysis of hematoxylin-eosin (H&E) images of the removed tissue. Novel techniques such as multi-photon microscopy (MPM) show promising results for performing real-time optical biopsies. However, clinicians are not used to this imaging modality and correlation between MPM and H&E information is not clear. The objective of this paper is to describe and make publicly available an extensive dataset of fully co-registered H&E and MPM images that allows the research community to analyze the relationship between MPM and H&E histopathological images and the effect of the semantic gap that prevents clinicians from correctly diagnosing MPM images. The dataset provides a fully scanned tissue images at 10x optical resolution (0.5 µm/px) from 50 samples of lesions obtained by colonoscopies and colectomies. Diagnostics capabilities of TPF and H&E images were compared. Additionally, TPF tiles were virtually stained into H&E images by means of a deep-learning model. A panel of 5 expert pathologists evaluated the different modalities into three classes (healthy, adenoma/hyperplastic, and adenocarcinoma). Results showed that the performance of the pathologists over MPM images was 65% of the H&E performance while the virtual staining method achieved 90%. MPM imaging can provide appropriate information for diagnosing colorectal cancer without the need for H&E staining. However, the existing semantic gap among modalities needs to be corrected.
Collapse
Affiliation(s)
- Artzai Picon
- TECNALIA, Basque Research and Technology Alliance (BRTA), Astondo bidea, Edificio 700, 48160 Derio (Bizkaia), Spain.,University of the Basque Country UPV/EHU, Ingeniero Torres Quevedo Plaza, 1, 48013 Bilbao, Spain
| | - Elena Terradillos
- TECNALIA, Basque Research and Technology Alliance (BRTA), Astondo bidea, Edificio 700, 48160 Derio (Bizkaia), Spain
| | - Luisa F Sánchez-Peralta
- Centro de Cirugía de Mínima Invasión Jesús Usón, Carretera N-521, km. 41,8, 10071 Cáceres, Spain
| | - Sara Mattana
- National Institute of Optics, National Research Council (CNR-INO), Largo E. Fermi 6, 50125 Florence, Italy.,European Laboratory for Non-Linear Spectroscopy (LENS), Via N. Carrara 1, Sesto Fiorentino 50019, Italy
| | - Riccardo Cicchi
- National Institute of Optics, National Research Council (CNR-INO), Largo E. Fermi 6, 50125 Florence, Italy.,European Laboratory for Non-Linear Spectroscopy (LENS), Via N. Carrara 1, Sesto Fiorentino 50019, Italy
| | - Benjamin J Blover
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Nagore Arbide
- Osakidetza Basque Health Service, Basurto University Hospital, Department of Pathological Anatomy, Bilbao (Bizkaia), Spain
| | - Jacques Velasco
- Osakidetza Basque Health Service, Basurto University Hospital, Department of Pathological Anatomy, Bilbao (Bizkaia), Spain
| | - Mª Carmen Etzezarraga
- Osakidetza Basque Health Service, Basurto University Hospital, Department of Pathological Anatomy, Bilbao (Bizkaia), Spain
| | - Francesco S Pavone
- Department of Physics, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Estibaliz Garrote
- TECNALIA, Basque Research and Technology Alliance (BRTA), Astondo bidea, Edificio 700, 48160 Derio (Bizkaia), Spain
| | - Cristina L Saratxaga
- TECNALIA, Basque Research and Technology Alliance (BRTA), Astondo bidea, Edificio 700, 48160 Derio (Bizkaia), Spain
| |
Collapse
|
4
|
Terradillos E, Saratxaga CL, Mattana S, Cicchi R, Pavone FS, Andraka N, Glover BJ, Arbide N, Velasco J, Etxezarraga MC, Picon A. Analysis on the Characterization of Multiphoton Microscopy Images for Malignant Neoplastic Colon Lesion Detection under Deep Learning Methods. J Pathol Inform 2021; 12:27. [PMID: 34447607 PMCID: PMC8359734 DOI: 10.4103/jpi.jpi_113_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/29/2021] [Accepted: 06/21/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Colorectal cancer has a high incidence rate worldwide, with over 1.8 million new cases and 880,792 deaths in 2018. Fortunately, its early detection significantly increases the survival rate, reaching a cure rate of 90% when diagnosed at a localized stage. Colonoscopy is the gold standard technique for detection and removal of colorectal lesions with potential to evolve into cancer. When polyps are found in a patient, the current procedure is their complete removal. However, in this process, gastroenterologists cannot assure complete resection and clean margins which are given by the histopathology analysis of the removed tissue, which is performed at laboratory. AIMS In this paper, we demonstrate the capabilities of multiphoton microscopy (MPM) technology to provide imaging biomarkers that can be extracted by deep learning techniques to identify malignant neoplastic colon lesions and distinguish them from healthy, hyperplastic, or benign neoplastic tissue, without the need for histopathological staining. MATERIALS AND METHODS To this end, we present a novel MPM public dataset containing 14,712 images obtained from 42 patients and grouped into 2 classes. A convolutional neural network is trained on this dataset and a spatially coherent predictions scheme is applied for performance improvement. RESULTS We obtained a sensitivity of 0.8228 ± 0.1575 and a specificity of 0.9114 ± 0.0814 on detecting malignant neoplastic lesions. We also validated this approach to estimate the self-confidence of the network on its own predictions, obtaining a mean sensitivity of 0.8697 and a mean specificity of 0.9524 with the 18.67% of the images classified as uncertain. CONCLUSIONS This work lays the foundations for performing in vivo optical colon biopsies by combining this novel imaging technology together with deep learning algorithms, hence avoiding unnecessary polyp resection and allowing in situ diagnosis assessment.
Collapse
Affiliation(s)
| | | | - Sara Mattana
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy
| | - Riccardo Cicchi
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy
| | | | - Nagore Andraka
- Basque Foundation for Health Innovation and Research, Barakaldo, Spain
| | | | - Nagore Arbide
- Department of Pathological Anatomy, Osakidetza Basque Health Service, Basurto University Hospital, Bilbao, Spain
| | - Jacques Velasco
- Department of Pathological Anatomy, Osakidetza Basque Health Service, Basurto University Hospital, Bilbao, Spain
| | - Mª Carmen Etxezarraga
- Department of Pathological Anatomy, Osakidetza Basque Health Service, Basurto University Hospital, Bilbao, Spain
| | - Artzai Picon
- University of the Basque Country UPV/EHU, Bilbao, Spain
| |
Collapse
|
5
|
Ortega-Morán JF, Azpeitia Á, Sánchez-Peralta LF, Bote-Curiel L, Pagador B, Cabezón V, Saratxaga CL, Sánchez-Margallo FM. Medical needs related to the endoscopic technology and colonoscopy for colorectal cancer diagnosis. BMC Cancer 2021; 21:467. [PMID: 33902503 PMCID: PMC8077886 DOI: 10.1186/s12885-021-08190-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/14/2021] [Indexed: 12/14/2022] Open
Abstract
Background The high incidence and mortality rate of colorectal cancer require new technologies to improve its early diagnosis. This study aims at extracting the medical needs related to the endoscopic technology and the colonoscopy procedure currently used for colorectal cancer diagnosis, essential for designing these demanded technologies. Methods Semi-structured interviews and an online survey were used. Results Six endoscopists were interviewed and 103 were surveyed, obtaining the demanded needs that can be divided into: a) clinical needs, for better polyp detection and classification (especially flat polyps), location, size, margins and penetration depth; b) computer-aided diagnosis (CAD) system needs, for additional visual information supporting polyp characterization and diagnosis; and c) operational/physical needs, related to limitations of image quality, colon lighting, flexibility of the endoscope tip, and even poor bowel preparation. Conclusions This study shows some undertaken initiatives to meet the detected medical needs and challenges to be solved. The great potential of advanced optical technologies suggests their use for a better polyp detection and classification since they provide additional functional and structural information than the currently used image enhancement technologies. The inspection of remaining tissue of diminutive polyps (< 5 mm) should be addressed to reduce recurrence rates. Few progresses have been made in estimating the infiltration depth. Detection and classification methods should be combined into one CAD system, providing visual aids over polyps for detection and displaying a Kudo-based diagnosis suggestion to assist the endoscopist on real-time decision making. Estimated size and location of polyps should also be provided. Endoscopes with 360° vision are still a challenge not met by the mechanical and optical systems developed to improve the colon inspection. Patients and healthcare providers should be trained to improve the patient’s bowel preparation. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08190-z.
Collapse
Affiliation(s)
| | - Águeda Azpeitia
- Biobanco Vasco, Fundación Vasca de Investigaciones e Innovación Sanitaria (BIOEF), Ronda de Azkue, 1, 48902, Barakaldo, Spain
| | | | - Luis Bote-Curiel
- Jesús Usón Minimally Invasive Surgery Centre, Ctra. N-521, Km 41.8, 10071, Cáceres, Spain
| | - Blas Pagador
- Jesús Usón Minimally Invasive Surgery Centre, Ctra. N-521, Km 41.8, 10071, Cáceres, Spain
| | - Virginia Cabezón
- Biobanco Vasco, Fundación Vasca de Investigaciones e Innovación Sanitaria (BIOEF), Ronda de Azkue, 1, 48902, Barakaldo, Spain
| | - Cristina L Saratxaga
- TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, C/Geldo. Edificio 700, E-48160, Derio, Bizkaia, Spain
| | | |
Collapse
|
6
|
Zhang H, Chen Y, Cao D, Li W, Jing Y, Zhong H, Liu H, Zhu X. Optical biopsy of laryngeal lesions using femtosecond multiphoton microscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:1308-1319. [PMID: 33796355 PMCID: PMC7984806 DOI: 10.1364/boe.414931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/17/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Laryngeal squamous cell carcinoma (LSCC) is one of the most prevalent malignancy of the upper aerodigestive tract. Detection of early lesions in vivo could improve the survival rate significantly. In this study, we demonstrated that femtosecond multiphoton microscopy (MPM) is an effective tool to visualize the microscopic features within fixed laryngeal tissues, without sectioning, staining, or labeling. Accurate detection of lesions and determination of the tumor grading can be achieved, with excellent consistency with conventional histological examination. These results suggest that MPM may represent a powerful tool for in-vivo or fast ex-vivo diagnosis of laryngeal lesions at the point of care.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University; Beijing Key Laboratory of Head and Neck Molecular Diagnostic Pathology, Beijing 100730, China
- These authors contributed equally to this work
| | - Yan Chen
- Femtosecond Research Center (Guangzhou), A616 80 Lanyue Road, Guangzhou 510663, China
- These authors contributed equally to this work
| | - Dingfang Cao
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University; Beijing Key Laboratory of Head and Neck Molecular Diagnostic Pathology, Beijing 100730, China
| | - Wenjing Li
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University; Beijing Key Laboratory of Head and Neck Molecular Diagnostic Pathology, Beijing 100730, China
| | - Yanlei Jing
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University; Beijing Key Laboratory of Head and Neck Molecular Diagnostic Pathology, Beijing 100730, China
| | - Hua Zhong
- Femtosecond Research Center (Guangzhou), A616 80 Lanyue Road, Guangzhou 510663, China
| | - Honggang Liu
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University; Beijing Key Laboratory of Head and Neck Molecular Diagnostic Pathology, Beijing 100730, China
| | - Xin Zhu
- Femtosecond Research Center (Guangzhou), A616 80 Lanyue Road, Guangzhou 510663, China
| |
Collapse
|
7
|
Glover B, Teare J, Patel N. The Status of Advanced Imaging Techniques for Optical Biopsy of Colonic Polyps. Clin Transl Gastroenterol 2020; 11:e00130. [PMID: 32352708 PMCID: PMC7145035 DOI: 10.14309/ctg.0000000000000130] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
The progressive miniaturization of photonic components presents the opportunity to obtain unprecedented microscopic images of colonic polyps in real time during endoscopy. This information has the potential to act as "optical biopsy" to aid clinical decision-making, including the possibility of adopting new paradigms such as a "resect and discard" approach for low-risk lesions. The technologies discussed in this review include confocal laser endomicroscopy, optical coherence tomography, multiphoton microscopy, Raman spectroscopy, and hyperspectral imaging. These are in different stages of development and clinical readiness, but all show the potential to produce reliable in vivo discrimination of different tissue types. A structured literature search of the imaging techniques for colorectal polyps has been conducted. The significant developments in endoscopic imaging were identified for each modality, and the status of current development was discussed. Of the advanced imaging techniques discussed, confocal laser endomicroscopy is in clinical use and, under optimal conditions with an experienced operator, can provide accurate histological assessment of tissue. The remaining techniques show potential for incorporation into endoscopic equipment and practice, although further component development is needed, followed by robust prospective validation of accuracy. Optical coherence tomography illustrates tissue "texture" well and gives good assessment of mucosal thickness and layers. Multiphoton microscopy produces high-resolution images at a subcellular resolution. Raman spectroscopy and hyperspectral imaging are less developed endoscopically but provide a tissue "fingerprint" which can distinguish between tissue types. Molecular imaging may become a powerful adjunct to other techniques, with its ability to precisely label specific molecules within tissue and thereby enhance imaging.
Collapse
Affiliation(s)
- Ben Glover
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Julian Teare
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Nisha Patel
- Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
8
|
Li L, Han Z, Qiu L, Kang D, Zhan Z, Tu H, Chen J. Label-free multiphoton imaging to assess neoadjuvant therapy responses in breast carcinoma. Int J Biol Sci 2020; 16:1376-1387. [PMID: 32210726 PMCID: PMC7085226 DOI: 10.7150/ijbs.41579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/02/2020] [Indexed: 11/23/2022] Open
Abstract
Neoadjuvant chemotherapy has been used increasingly in patients with early-stage or locally advanced breast carcinoma, and has been recommended as a general approach in locally advanced-stage diseases. Assessing therapy response could offer prognostic information to help determine subsequent nursing plan; particularly it is essential to identify responders and non-responders for the sake of helping develop follow-up treatment strategies. However, at present, diagnostic accuracy of preoperative clinical examination are still not satisfactory. Here we presented an alternate approach to monitor tumor and stroma changes associated with neoadjuvant therapy responses in breast carcinoma, with a great potential for becoming a new diagnostic tool—multiphoton microscopy. Imaging results showed that multiphoton imaging techniques have the ability to label-freely visualize tumor response such as tumor necrosis, and stromal response including fibrosis, mucinous response, inflammatory response as well as vascular hyperplasia in situ at cellular and subcellular levels. Moreover, using automated image analysis and a set of scoring methods, we found significant differences in the area of cell nucleus and in the content of collagen fibers between the pre-treatment and post-treatment breast carcinoma tissues. In summary, this study was conducted to pathologically evaluate the response of breast carcinoma to preoperative chemotherapy as well as to assess the efficacy of multiphoton microscopy in detecting these pathological changes, and experimental results demonstrated that this microscope may be a promising tool for label-free, real-time assessment of treatment response without the use of any exogenous contrast agents.
Collapse
Affiliation(s)
- Lianhuang Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Zhonghua Han
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Lida Qiu
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, P. R. China.,College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou 350108, P. R. China
| | - Deyong Kang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Zhenlin Zhan
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Haohua Tu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jianxin Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, P. R. China
| |
Collapse
|
9
|
Rasti P, Wolf C, Dorez H, Sablong R, Moussata D, Samiei S, Rousseau D. Machine Learning-Based Classification of the Health State of Mice Colon in Cancer Study from Confocal Laser Endomicroscopy. Sci Rep 2019; 9:20010. [PMID: 31882817 PMCID: PMC6934609 DOI: 10.1038/s41598-019-56583-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 12/09/2019] [Indexed: 01/26/2023] Open
Abstract
In this article, we address the problem of the classification of the health state of the colon's wall of mice, possibly injured by cancer with machine learning approaches. This problem is essential for translational research on cancer and is a priori challenging since the amount of data is usually limited in all preclinical studies for practical and ethical reasons. Three states considered including cancer, health, and inflammatory on tissues. Fully automated machine learning-based methods are proposed, including deep learning, transfer learning, and shallow learning with SVM. These methods addressed different training strategies corresponding to clinical questions such as the automatic clinical state prediction on unseen data using a pre-trained model, or in an alternative setting, real-time estimation of the clinical state of individual tissue samples during the examination. Experimental results show the best performance of 99.93% correct recognition rate obtained for the second strategy as well as the performance of 98.49% which were achieved for the more difficult first case.
Collapse
Affiliation(s)
- Pejman Rasti
- Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), UMR INRA IRHS, Université d'Angers, Angers, 49000, France
| | - Christian Wolf
- INSA-Lyon, INRIA, LIRIS, CITI, CNRS, Villeurbanne, France
| | - Hugo Dorez
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, 69621, France
| | - Raphael Sablong
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, 69621, France
| | - Driffa Moussata
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, 69621, France
| | - Salma Samiei
- Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), UMR INRA IRHS, Université d'Angers, Angers, 49000, France
| | - David Rousseau
- Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), UMR INRA IRHS, Université d'Angers, Angers, 49000, France.
| |
Collapse
|
10
|
Dilipkumar A, Al‐Shemmary A, Kreiß L, Cvecek K, Carlé B, Knieling F, Gonzales Menezes J, Thoma O, Schmidt M, Neurath MF, Waldner M, Friedrich O, Schürmann S. Label-Free Multiphoton Endomicroscopy for Minimally Invasive In Vivo Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801735. [PMID: 31016109 PMCID: PMC6468963 DOI: 10.1002/advs.201801735] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/29/2019] [Indexed: 05/24/2023]
Abstract
Multiphoton microscopy of cellular autofluorescence and second harmonic generation from collagen facilitates imaging of living cells and tissues without the need for additional fluorescent labels. Here, a compact multiphoton endomicroscope for label-free in vivo imaging in small animals via side-viewing needle objectives is presented. Minimal invasive imaging at cellular resolution is performed in colonoscopy of mice without surgical measures and without fluorescent dyes as a contrast agent. The colon mucosa is imaged repeatedly in the same animal in a mouse model of acute intestinal inflammation to study the process of inflammation at the tissue level within a time period of ten days, demonstrating the capabilities of label-free endomicroscopy for longitudinal studies for the first time.
Collapse
Affiliation(s)
- Ashwathama Dilipkumar
- Institute of Medical BiotechnologyFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)Paul‐Gordan‐Str. 391052ErlangenGermany
- Erlangen Graduate School in Advanced Optical TechnologiesFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)Paul‐Gordan‐Str. 791052ErlangenGermany
| | - Alaa Al‐Shemmary
- Institute of Medical BiotechnologyFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)Paul‐Gordan‐Str. 391052ErlangenGermany
- Erlangen Graduate School in Advanced Optical TechnologiesFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)Paul‐Gordan‐Str. 791052ErlangenGermany
| | - Lucas Kreiß
- Institute of Medical BiotechnologyFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)Paul‐Gordan‐Str. 391052ErlangenGermany
- Erlangen Graduate School in Advanced Optical TechnologiesFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)Paul‐Gordan‐Str. 791052ErlangenGermany
| | - Kristian Cvecek
- Erlangen Graduate School in Advanced Optical TechnologiesFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)Paul‐Gordan‐Str. 791052ErlangenGermany
- Institute of Photonic TechnologiesFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)Konrad‐Zuse‐Str. 3–591052ErlangenGermany
| | - Birgitta Carlé
- Institute of Medical BiotechnologyFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)Paul‐Gordan‐Str. 391052ErlangenGermany
- Erlangen Graduate School in Advanced Optical TechnologiesFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)Paul‐Gordan‐Str. 791052ErlangenGermany
| | - Ferdinand Knieling
- Department of Internal Medicine 1University Hospital ErlangenUlmenweg 1891054ErlangenGermany
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenLoschgestr. 1591054ErlangenGermany
| | - Jean Gonzales Menezes
- Department of Internal Medicine 1University Hospital ErlangenUlmenweg 1891054ErlangenGermany
| | - Oana‐Maria Thoma
- Erlangen Graduate School in Advanced Optical TechnologiesFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)Paul‐Gordan‐Str. 791052ErlangenGermany
- Department of Internal Medicine 1University Hospital ErlangenUlmenweg 1891054ErlangenGermany
| | - Michael Schmidt
- Erlangen Graduate School in Advanced Optical TechnologiesFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)Paul‐Gordan‐Str. 791052ErlangenGermany
- Institute of Photonic TechnologiesFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)Konrad‐Zuse‐Str. 3–591052ErlangenGermany
| | - Markus F. Neurath
- Erlangen Graduate School in Advanced Optical TechnologiesFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)Paul‐Gordan‐Str. 791052ErlangenGermany
- Department of Internal Medicine 1University Hospital ErlangenUlmenweg 1891054ErlangenGermany
| | - Maximilian Waldner
- Erlangen Graduate School in Advanced Optical TechnologiesFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)Paul‐Gordan‐Str. 791052ErlangenGermany
- Department of Internal Medicine 1University Hospital ErlangenUlmenweg 1891054ErlangenGermany
| | - Oliver Friedrich
- Institute of Medical BiotechnologyFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)Paul‐Gordan‐Str. 391052ErlangenGermany
- Erlangen Graduate School in Advanced Optical TechnologiesFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)Paul‐Gordan‐Str. 791052ErlangenGermany
| | - Sebastian Schürmann
- Institute of Medical BiotechnologyFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)Paul‐Gordan‐Str. 391052ErlangenGermany
- Erlangen Graduate School in Advanced Optical TechnologiesFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)Paul‐Gordan‐Str. 791052ErlangenGermany
| |
Collapse
|
11
|
Springer S, Zieger M, Hipler UC, König K, Lademann J, Kaatz M, Koehler MJ. Non‐invasive evaluation of human mucosal structures by multiphoton laser scanning tomography in vitro. Skin Res Technol 2018; 24:445-449. [DOI: 10.1111/srt.12451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2018] [Indexed: 12/24/2022]
Affiliation(s)
- S. Springer
- Department of DermatologyUniversity Hospital Jena Jena Germany
| | - M. Zieger
- Department of DermatologyUniversity Hospital Jena Jena Germany
- Department of DermatologySRH Wald‐Klinikum Gera GmbH Gera GmbH Germany
| | - U. C. Hipler
- Department of DermatologyUniversity Hospital Jena Jena Germany
| | | | - J. Lademann
- Department of Dermatology, Venereology and AllergologyCenter of Experimental and Cutaneous Physiology (CCP)Charité‐Universitätsmedizin Berlin Berlin Germany
| | - M. Kaatz
- Department of DermatologyUniversity Hospital Jena Jena Germany
- Department of DermatologySRH Wald‐Klinikum Gera GmbH Gera GmbH Germany
| | - M. J. Koehler
- Department of DermatologyUniversity Hospital Jena Jena Germany
- Department of DermatologySRH Zentralklinikum Suhl Suhl Germany
| |
Collapse
|
12
|
Li X, Li H, He X, Chen T, Xia X, Yang C, Zheng W. Spectrum- and time-resolved endogenous multiphoton signals reveal quantitative differentiation of premalignant and malignant gastric mucosa. BIOMEDICAL OPTICS EXPRESS 2018; 9:453-471. [PMID: 29552386 PMCID: PMC5854051 DOI: 10.1364/boe.9.000453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/25/2017] [Accepted: 12/30/2017] [Indexed: 05/09/2023]
Abstract
Early identification of premalignant and malignant gastric mucosa is crucial to decrease the incidence and mortality of stomach cancer. Spectrum- and time-resolved multiphoton microscopy are capable of providing not only structural but also biochemical information at the subcellular level. Based on this multidimensional imaging technique, we performed a systematic investigation on fresh human tissue specimens at the typical stages of gastric carcinogenesis, including normal, chronic gastritis with erosion, chronic gastritis with intestinal metaplasia, and intestinal-type adenocarcinoma. The results demonstrate that this technique is available to characterize the three-dimensional subcellular morphological and biochemical properties of gastric mucosa and further provide quantitative indicators of different gastric disorders, by using endogenous contrast. With advances in multiphoton endoscopy, it has the potential to allow noninvasive, label-free, real-time histological and functional diagnosis of premalignant and malignant lesions of stomach in the future.
Collapse
Affiliation(s)
- Xi Li
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shen Zhen 518036, China
- Authors contributed equally to this work
| | - Hui Li
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Authors contributed equally to this work
| | - Xingzhen He
- Department of Gastroenterology, Zhejiang Hospital, Hangzhou 310007, China
| | - Tingai Chen
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xianyuan Xia
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chunxia Yang
- Department of Pathology, Jinchang First People's Hospital, Jinchang 737109, China
| | - Wei Zheng
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
13
|
Xu J, Kang D, Zeng Y, Zhuo S, Zhu X, Jiang L, Chen J, Lin J. Multiphoton microscopy for label-free identification of intramural metastasis in human esophageal squamous cell carcinoma. BIOMEDICAL OPTICS EXPRESS 2017; 8:3360-3368. [PMID: 28717572 PMCID: PMC5508833 DOI: 10.1364/boe.8.003360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 05/20/2023]
Abstract
For complete removal of cancerous tissue in esophageal squamous cell carcinoma (ESCC), intramural metastasis (IM) should be identified preoperatively or intraoperatively. Here, multiphoton microscopy (MPM) was introduced for label-free identification of IM in the esophageal wall, by a combination of two-photon excited fluorescence (TPEF), second harmonic generation (SHG) imaging, and spectral analysis. Three-dimensional (3D) imaging of the IM region was also performed. Quantitative parameters, including 3D fiber orientation, were measured by 3D-weighted orientation vector summation. Overall, MPM showed the potential to identify IM. With the development of the advanced MPM endoscope, clinical identification of IM by MPM will be possible.
Collapse
Affiliation(s)
- Jian Xu
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
- These authors contributed equally to this work
| | - Deyong Kang
- Department of Pathology, The Affiliated Union Hospital, Fujian Medical University, Fuzhou 350001, China
- These authors contributed equally to this work
| | - Yaping Zeng
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
- These authors contributed equally to this work
| | - Shuangmu Zhuo
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Xiaoqin Zhu
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Liwei Jiang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Jianxin Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Jiangbo Lin
- Department of Thoracic Surgery, The Affiliated Union Hospital, Fujian Medical University, Fuzhou 350001, China
| |
Collapse
|
14
|
Korneva YS, Dorosevich AE, Maryakhina VS. Fluorescent diagnostics of epithelial neoplasms of different colon parts. Lasers Surg Med 2017; 49:763-766. [PMID: 28470968 DOI: 10.1002/lsm.22683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2017] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Changes in the biochemical composition of the tissue during colon cancer progression usually precede morphological changes registered by light microscopy. These changes are very sensitive and may be used for diagnostics in difficult cases, when it is impossible to obtain sufficient amount of material during colonoscopy. The aim of the study is analysis of spectral characteristics of sporadic adenomas and tumors in different parts of colon for improving tumors diagnostics in disputable cases. DESIGN The spectra of fluorescence excitation of histological sections from 78 patients with colon cancer (adenocarcinoma) and colonic adenomas of different localizations were measured. RESULTS The spectra of fluorescence excitation of all types of adenomas as well as adenocarcinoma have two maxima at 260/270 nm and at 330/340 nm. The first maximum is primarily defined by tryptophan and phenylalanin containing peptides, one of them is glucagon. The second maximum is mainly defined by collagen in stroma. Progression of precancer lesions to advanced cancer leads to increase of NADH concentration impacting on the second maximum of spectra. However, spectra of all types of the investigated lesions have peculiarities depending on localization. At odds to the previous data about similarities between distal colon and rectum, our results demonstrate similar spectra for proximal colon and rectum due to some similarities in morphological and, as a consequence, biochemical composition. Tumor can be detected by spectral techniques on histological slides even if the specimen contains very few tumorous cells in stroma. CONCLUSION Biochemical changes and their similarities for precancer lesions and advanced colon cancer have described. Peculiarities of spectral data for different parts of colon may change the previous opinion about similar mechanisms of cancerogenesis for distal colon and rectum. Moreover, investigation of tissue specimen obtained for histological examination and containing lack of malignant epithelial cells in massive stroma does not interfere with analysis due to specific disproportion of spectrum maxima. Lasers Surg. Med. 49:763-766, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yulia S Korneva
- Department of Pathological Anatomy, Smolensk State Medical University, 28 Krupskoy st., Smolensk, 214019, Russia.,Smolensk Regional Institute of Pathology, 27 Gagarina av., Smolensk, 214020, Russia
| | - Alexander E Dorosevich
- Department of Pathological Anatomy, Smolensk State Medical University, 28 Krupskoy st., Smolensk, 214019, Russia.,Smolensk Regional Institute of Pathology, 27 Gagarina av., Smolensk, 214020, Russia
| | - Valeriya S Maryakhina
- Institute of micro- and nanotechnologies, Orenburg State University, 13 Pobedy st., Orenburg, 460018, Russia
| |
Collapse
|
15
|
Hall AM, Schuh CD, Haenni D. New frontiers in intravital microscopy of the kidney. Curr Opin Nephrol Hypertens 2017; 26:172-178. [DOI: 10.1097/mnh.0000000000000313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Beack S, Cho M, Kim YE, Ahn GO, Hahn SK. Hyaluronate-Peanut Agglutinin Conjugates for Target-Specific Bioimaging of Colon Cancer. Bioconjug Chem 2017; 28:1434-1442. [PMID: 28345902 DOI: 10.1021/acs.bioconjchem.7b00126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Colon cancer is one of the most common death-related cancers in the world. For treating colon cancer, it is crucial to detect and remove malignant lesions early. Here, we developed hyaluronate (HA)-peanut agglutinin (PNA) conjugates for the bioimaging of colon cancer. The HA-PNA conjugates were successfully synthesized by the coupling reaction between aldehyde-modified HA and the N-terminal amine group of PNA. For diagnostic imaging, rhodamine B (RhoB) was chemically conjugated onto PNA in HA-PNA conjugates. After intraluminal injection of HA-PNA-RhoB conjugates into tumor-bearing mice, small-sized colon cancers could be effectively visualized by ex vivo imaging with an in vivo imaging system (IVIS) and a two-photon microscope. With these results taken together, we could confirm the feasibility of HA-PNA-RhoB conjugates as a bioimaging agent for detecting colon cancers.
Collapse
Affiliation(s)
- Songeun Beack
- Department of Materials Science and Engineering and ‡Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea
| | - Minsoo Cho
- Department of Materials Science and Engineering and ‡Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea
| | - Young-Eun Kim
- Department of Materials Science and Engineering and ‡Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea
| | - G-One Ahn
- Department of Materials Science and Engineering and ‡Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering and ‡Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea
| |
Collapse
|
17
|
Layer-resolved colorectal tissues using nonlinear microscopy. Lasers Med Sci 2015; 30:1589-97. [PMID: 26003427 DOI: 10.1007/s10103-015-1767-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 05/05/2015] [Indexed: 01/22/2023]
Abstract
In this work, multiphoton microscopy (MPM), based on the nonlinear optical processes two-photon excited fluorescence (TPEF) and second harmonic generation (SHG), was extended to evaluate the feasibility of using MPM to distinguish layers of the bowel wall. It was found that MPM has the ability to identify the four-layer microstructures of colorectal tissues including mucosa, submucosa, muscularis propria, and serosa as there are many intrinsic signal sources in each layer. Our results also showed the capability of using the quantitative analyses of MPM images for quantifying some feature parameters including the nuclear area, nuclear-to-cytoplasmic ratio, and optical redox ratio. This work demonstrates that MPM has the potential in noninvasively monitoring the development and progression of colorectal diseases and then guiding effective treatment.
Collapse
|
18
|
Thomas G, van Voskuilen J, Truong H, Song JY, Gerritsen HC, Sterenborg HJCM. In vivo nonlinear spectral imaging as a tool to monitor early spectroscopic and metabolic changes in a murine cutaneous squamous cell carcinoma model. BIOMEDICAL OPTICS EXPRESS 2014; 5:4281-99. [PMID: 25574438 PMCID: PMC4285605 DOI: 10.1364/boe.5.004281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 05/11/2023]
Abstract
Timely detection of cutaneous squamous cell carcinoma with non-invasive modalities like nonlinear spectral imaging (NLSI) can ensure efficient preventive or therapeutic measures for patients. In this study, in vivo NLSI was used to study spectral characteristics in murine skin treated with 7, 12-dimethylbenz(a)anthracene. The results show that NLSI could detect emission spectral changes during the early preclinical stages of skin carcinogenesis. Analyzing these emission spectra using simulated band-pass filters at 450-460 nm and 525-535 nm, gave parameters that were expressed as a ratio. This ratio was increased and thus suggestive of elevated metabolic activity in early stages of skin carcinogenesis.
Collapse
Affiliation(s)
- Giju Thomas
- Department of Biomedical Engineering and Physics, Academic Medical Centre, Meibergdreef 9, 1105 AZ Amsterdam, The
Netherlands
- Centre for Optical Diagnostics and Therapy, Erasmus Medical Centre, Post Box 2040, 3000 CA, Rotterdam, The
Netherlands
| | - Johan van Voskuilen
- Department of Molecular Biophysics, Utrecht University, 3508 TA, Utrecht, The
Netherlands
| | - Hoa Truong
- Department of Molecular Biophysics, Utrecht University, 3508 TA, Utrecht, The
Netherlands
| | - Ji-Ying Song
- Department of Experimental Animal Pathology, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, Amsterdam, The
Netherlands
| | - Hans C. Gerritsen
- Department of Molecular Biophysics, Utrecht University, 3508 TA, Utrecht, The
Netherlands
| | - H. J. C. M. Sterenborg
- Department of Biomedical Engineering and Physics, Academic Medical Centre, Meibergdreef 9, 1105 AZ Amsterdam, The
Netherlands
| |
Collapse
|
19
|
Cicchi R, Kapsokalyvas D, Troiano M, Campolmi P, Morini C, Massi D, Cannarozzo G, Lotti T, Pavone FS. In vivo non-invasive monitoring of collagen remodelling by two-photon microscopy after micro-ablative fractional laser resurfacing. JOURNAL OF BIOPHOTONICS 2014; 7:914-925. [PMID: 24339127 DOI: 10.1002/jbio.201300124] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/02/2013] [Accepted: 11/12/2013] [Indexed: 06/03/2023]
Abstract
Non-linear optical microscopy is becoming popular as a non-invasive in vivo imaging modality in dermatology. In this study, combined TPF and SHG microscopy were used to monitor collagen remodelling in vivo after micro-ablative fractional laser resurfacing. Papillary dermis of living subjects, covering a wide age range, was imaged immediately before and forty days after treatment. A qualitative visual examination of acquired images demonstrated an age-dependent remodelling effect on collagen. Additional quantitative analysis of new collagen production was performed by means of two image analysis methods. A higher increase in SHG to TPF ratio, corresponding to a stronger treatment effectiveness, was found in older subjects, whereas the effect was found to be negligible in young, and minimal in middle age subjects. Analysis of collagen images also showed a dependence of the treatment effectiveness with age but with controversial results. While the diagnostic potential of in vivo multiphoton microscopy has already been demonstrated for skin cancer and other skin diseases, here we first successfully explore its potential use for a non-invasive follow-up of a laser-based treatment.
Collapse
Affiliation(s)
- Riccardo Cicchi
- National Institute of Optics, National Research Council INO-CNR, Largo E. Fermi 6, 50125, Florence, Italy; European Laboratory for Non-linear Spectroscopy LENS, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Thomas G, van Voskuilen J, Gerritsen HC, Sterenborg HJCM. Advances and challenges in label-free nonlinear optical imaging using two-photon excitation fluorescence and second harmonic generation for cancer research. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 141:128-38. [PMID: 25463660 DOI: 10.1016/j.jphotobiol.2014.08.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/20/2014] [Accepted: 08/23/2014] [Indexed: 11/28/2022]
Abstract
Nonlinear optical imaging (NLOI) has emerged to be a promising tool for bio-medical imaging in recent times. Among the various applications of NLOI, its utility is the most significant in the field of pre-clinical and clinical cancer research. This review begins by briefly covering the core principles involved in NLOI, such as two-photon excitation fluorescence (TPEF) and second harmonic generation (SHG). Subsequently, there is a short description on the various cellular components that contribute to endogenous optical fluorescence. Later on the review deals with its main theme--the challenges faced during label-free NLO imaging in translational cancer research. While this review addresses the accomplishment of various label-free NLOI based studies in cancer diagnostics, it also touches upon the limitations of the mentioned studies. In addition, areas in cancer research that need to be further investigated by label-free NLOI are discussed in a latter segment. The review eventually concludes on the note that label-free NLOI has and will continue to contribute richly in translational cancer research, to eventually provide a very reliable, yet minimally invasive cancer diagnostic tool for the patient.
Collapse
Affiliation(s)
- Giju Thomas
- Department of Biomedical Engineering and Physics, Academic Medical Centre, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Centre for Optical Diagnostics and Therapy, Erasmus Medical Centre, Post Box 2040, 3000 CA, Rotterdam, the Netherlands.
| | - Johan van Voskuilen
- Department of Molecular Biophysics, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Hans C Gerritsen
- Department of Molecular Biophysics, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - H J C M Sterenborg
- Department of Biomedical Engineering and Physics, Academic Medical Centre, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| |
Collapse
|
21
|
Clinical nonlinear laser imaging of human skin: a review. BIOMED RESEARCH INTERNATIONAL 2014; 2014:903589. [PMID: 25250337 PMCID: PMC4163368 DOI: 10.1155/2014/903589] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/11/2014] [Indexed: 11/23/2022]
Abstract
Nonlinear optical microscopy has the potential of being used in vivo as a noninvasive imaging modality for both epidermal and dermal imaging. This paper reviews the capabilities of nonlinear microscopy as a noninvasive high-resolution tool for clinical skin inspection. In particular, we show that two-photon fluorescence microscopy can be used as a diagnostic tool for characterizing epidermal layers by means of a morphological examination. Additional functional information on the metabolic state of cells can be provided by measuring the fluorescence decay of NADH. This approach allows differentiating epidermal layers having different structural and cytological features and has the potential of diagnosing pathologies in a very early stage. Regarding therapy follow-up, we demonstrate that nonlinear microscopy could be successfully used for monitoring the effect of a treatment. In particular, combined two-photon fluorescence and second-harmonic generation microscopy were used in vivo for monitoring collagen remodeling after microablative fractional laser resurfacing and for quantitatively monitoring psoriasis on the basis of the morphology of epidermal cells and dermal papillae. We believe that the described microscopic modalities could find in the near future a stable place in a clinical dermatological setting for quantitative diagnostic purposes and as a monitoring method for various treatments.
Collapse
|
22
|
Zhuo S, Chen J. Stromal alterations as quantitative optical biomarkers of epithelial tumor progression. SCANNING 2014; 36:279-285. [PMID: 24347227 DOI: 10.1002/sca.21129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/28/2013] [Indexed: 06/03/2023]
Abstract
Stroma plays an important role during epithelial tumor progression. Probing stroma alteration may become an intrinsic indicator for evaluating epithelial tumor progression. In this review, we summarize our recent works on stromal alterations as quantitative optical biomarkers of epithelial tumor progression by use of nonlinear optical microscopy.
Collapse
Affiliation(s)
- Shuangmu Zhuo
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, 350007, China
| | | |
Collapse
|