1
|
Zhao R, Cui Q, Wang Z, Gao L. Coded aperture snapshot hyperspectral light field tomography. OPTICS EXPRESS 2023; 31:37336-37347. [PMID: 38017865 DOI: 10.1364/oe.501844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023]
Abstract
Multidimensional imaging has emerged as a powerful technology capable of simultaneously acquiring spatial, spectral, and depth information about a scene. However, existing approaches often rely on mechanical scanning or multi-modal sensing configurations, leading to prolonged acquisition times and increased system complexity. Coded aperture snapshot spectral imaging (CASSI) has introduced compressed sensing to recover three-dimensional (3D) spatial-spectral datacubes from single snapshot two-dimensional (2D) measurements. Despite its advantages, the reconstruction problem remains severely underdetermined due to the high compression ratio, resulting in limited spatial and spectral reconstruction quality. To overcome this challenge, we developed a novel two-stage cascaded compressed sensing scheme called coded aperture snapshot hyperspectral light field tomography (CASH-LIFT). By appropriately distributing the computation load to each stage, this method utilizes the compressibility of natural scenes in multiple domains, reducing the ill-posed nature of datacube recovery and achieving enhanced spatial resolution, suppressed aliasing artifacts, and improved spectral fidelity. Additionally, leveraging the snapshot 3D imaging capability of LIFT, our approach efficiently records a five-dimensional (5D) plenoptic function in a single snapshot.
Collapse
|
2
|
Dittrich PG, Kraus D, Ehrhardt E, Henkel T, Notni G. Multispectral Imaging Flow Cytometry with Spatially and Spectrally Resolving Snapshot-Mosaic Cameras for the Characterization and Classification of Bioparticles. MICROMACHINES 2022; 13:mi13020238. [PMID: 35208362 PMCID: PMC8879709 DOI: 10.3390/mi13020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 11/26/2022]
Abstract
In the development and optimization of biotechnological cultivation processes the continuous monitoring through the acquisition and interpretation of spectral and morphological properties of bioparticles are challenging. There is therefore a need for the parallel acquisition and interpretation of spatially and spectrally resolved measurements with which particles can be characterized and classified in-flow with high throughput. Therefore, in this paper we investigated the scientific and technological connectivity of standard imaging flow cytometry (IFC) with filter-on-chip based spatially and spectrally resolving snapshot-mosaic cameras for photonic sensing and control in a smart and innovative microfluidic device. For the investigations presented here we used the microalgae Haematococcus pluvialis (HP). These microalgae are used commercially to produce the antioxidant keto-carotenoid astaxanthin. Therefore, HP is relevant to practically demonstrate the usability of the developed system for Multispectral Imaging Flow Cytometry (MIFC) platform. The extension of standard IFC with snapshot-mosaic cameras and multivariate data processing is an innovative approach for the in-flow characterization and derived classification of bioparticles. Finally, the multispectral data acquisition and the therefore developed methodology is generalizable and enables further applications far beyond the here characterized population of HP cells.
Collapse
Affiliation(s)
- Paul-Gerald Dittrich
- Department of Mechanical Engineering, Group for Quality Assurance and Industrial Image Processing, Technische Universität Ilmenau, Gustav-Kirchhoff-Platz 2, 98693 Ilmenau, Germany;
- Correspondence:
| | - Daniel Kraus
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany; (D.K.); (T.H.)
| | - Enrico Ehrhardt
- Gesellschaft zur Förderung von Medizin-, Bio- und Umwelttechnologien e. V., Erich-Neuß-Weg 5, 06120 Halle (Saale), Germany;
| | - Thomas Henkel
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany; (D.K.); (T.H.)
| | - Gunther Notni
- Department of Mechanical Engineering, Group for Quality Assurance and Industrial Image Processing, Technische Universität Ilmenau, Gustav-Kirchhoff-Platz 2, 98693 Ilmenau, Germany;
| |
Collapse
|
3
|
Abstract
We present snapshot hyperspectral light field tomography (Hyper-LIFT), a highly efficient method in recording a 5D (x, y, spatial coordinates; θ, φ, angular coordinates; λ, wavelength) plenoptic function. Using a Dove prism array and a cylindrical lens array, we simultaneously acquire multi-angled 1D en face projections of the object like those in standard sparse-view computed tomography. We further disperse those projections and measure the spectra in parallel using a 2D image sensor. Within a single snapshot, the resultant system can capture a 5D data cube with 270 × 270 × 4 × 4 × 360 voxels. We demonstrated the performance of Hyper-LIFT in imaging spectral volumetric scenes.
Collapse
|
4
|
Cui Q, Park J, Iyer RR, Žurauskas M, Boppart SA, Smith RT, Gao L. Development of a fast calibration method for image mapping spectrometry. APPLIED OPTICS 2020; 59:6062-6069. [PMID: 32672750 PMCID: PMC7418183 DOI: 10.1364/ao.395988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
An image mapping spectrometer (IMS) is a snapshot hyperspectral imager that simultaneously captures both the spatial (x, y) and spectral (λ) information of incoming light. The IMS maps a three-dimensional (3D) datacube (x, y, λ) to a two-dimensional (2D) detector array (x, y) for parallel measurement. To reconstruct the original 3D datacube, one must construct a lookup table that connects voxels in the datacube and pixels in the raw image. Previous calibration methods suffer from either low speed or poor image quality. We herein present a slit-scan calibration method that can significantly reduce the calibration time while maintaining high accuracy. Moreover, we quantitatively analyzed the major artifact in the IMS, the striped image, and developed three numerical methods to correct for it.
Collapse
Affiliation(s)
- Qi Cui
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Jongchan Park
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Rishyashring R. Iyer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Mantas Žurauskas
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - R. Theodore Smith
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York 10003, USA
| | - Liang Gao
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, USA
- Corresponding author:
| |
Collapse
|
5
|
Pu H, Lin L, Sun D. Principles of Hyperspectral Microscope Imaging Techniques and Their Applications in Food Quality and Safety Detection: A Review. Compr Rev Food Sci Food Saf 2019; 18:853-866. [DOI: 10.1111/1541-4337.12432] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/05/2019] [Accepted: 01/15/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Hongbin Pu
- School of Food Science and EngineeringSouth China Univ. of Technology Guangzhou 510641 China
- Academy of Contemporary Food EngineeringSouth China Univ. of Technology, Guangzhou Higher Education Mega Center Guangzhou 510006 China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain FoodsGuangzhou Higher Education Mega Center Guangzhou 510006 China
| | - Lian Lin
- School of Food Science and EngineeringSouth China Univ. of Technology Guangzhou 510641 China
- Academy of Contemporary Food EngineeringSouth China Univ. of Technology, Guangzhou Higher Education Mega Center Guangzhou 510006 China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain FoodsGuangzhou Higher Education Mega Center Guangzhou 510006 China
| | - Da‐Wen Sun
- School of Food Science and EngineeringSouth China Univ. of Technology Guangzhou 510641 China
- Academy of Contemporary Food EngineeringSouth China Univ. of Technology, Guangzhou Higher Education Mega Center Guangzhou 510006 China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain FoodsGuangzhou Higher Education Mega Center Guangzhou 510006 China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science CentreUniv. College Dublin, National Univ. of Ireland Belfield, Dublin 4 Dublin Ireland
| |
Collapse
|
6
|
Zhao X, Ma T, Zeng Z, Zheng S, Gu Z. Hyperspectral imaging analysis of a photonic crystal bead array for multiplex bioassays. Analyst 2018; 141:6549-6556. [PMID: 27833950 DOI: 10.1039/c6an01756h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
For multiplex bioassays, one effective strategy is to employ microfluidic chips based on an array of photonic crystal beads (PCBs) that are encoded by their characteristic reflection spectrum (CRS). In this paper, we report a hyperspectral imaging system and algorithms for the high throughput decoding of a PCB array and subsequent detection. The results showed that the decoding accuracy of up to ∼500 PCBs is 98.56% with an excellent ability to extract low-intensity fluorescence intensities. The results also demonstrated hyperspectral imaging techniques which can simultaneously obtain both spatial and spectral information as powerful tools in the analysis of multiplex bioassays or microfluidic chips.
Collapse
Affiliation(s)
- Xiangwei Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China and Laboratory of Environment and Biosafety Research Institute of Southeast University in Suzhou, Suzhou 215123, China
| | - Tengfei Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China and Laboratory of Environment and Biosafety Research Institute of Southeast University in Suzhou, Suzhou 215123, China
| | - Zhaoyu Zeng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China and Laboratory of Environment and Biosafety Research Institute of Southeast University in Suzhou, Suzhou 215123, China
| | - Shiya Zheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China and Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu Province 210009, P.R. China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China and Laboratory of Environment and Biosafety Research Institute of Southeast University in Suzhou, Suzhou 215123, China
| |
Collapse
|
7
|
Novikova IV, Smallwood CR, Gong Y, Hu D, Hendricks L, Evans JE, Bhattarai A, Hess WP, El-Khoury PZ. Multimodal hyperspectral optical microscopy. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2017.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Luthman AS, Dumitru S, Quiros‐Gonzalez I, Joseph J, Bohndiek SE. Fluorescence hyperspectral imaging (fHSI) using a spectrally resolved detector array. JOURNAL OF BIOPHOTONICS 2017; 10:840-853. [PMID: 28485130 PMCID: PMC5953275 DOI: 10.1002/jbio.201600304] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/10/2017] [Accepted: 03/08/2017] [Indexed: 05/07/2023]
Abstract
The ability to resolve multiple fluorescent emissions from different biological targets in video rate applications, such as endoscopy and intraoperative imaging, has traditionally been limited by the use of filter-based imaging systems. Hyperspectral imaging (HSI) facilitates the detection of both spatial and spectral information in a single data acquisition, however, instrumentation for HSI is typically complex, bulky and expensive. We sought to overcome these limitations using a novel robust and low cost HSI camera based on a spectrally resolved detector array (SRDA). We integrated this HSI camera into a wide-field reflectance-based imaging system operating in the near-infrared range to assess the suitability for in vivo imaging of exogenous fluorescent contrast agents. Using this fluorescence HSI (fHSI) system, we were able to accurately resolve the presence and concentration of at least 7 fluorescent dyes in solution. We also demonstrate high spectral unmixing precision, signal linearity with dye concentration and at depth in tissue mimicking phantoms, and delineate 4 fluorescent dyes in vivo. Our approach, including statistical background removal, could be directly generalised to broader spectral ranges, for example, to resolve tissue reflectance or autofluorescence and in future be tailored to video rate applications requiring snapshot HSI data acquisition.
Collapse
Affiliation(s)
- Anna Siri Luthman
- Department of PhysicsUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEU.K.
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Li Ka Shing CentreRobinson WayCambridgeCB2 0REU.K.
| | - Sebastian Dumitru
- Department of PhysicsUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEU.K.
| | - Isabel Quiros‐Gonzalez
- Department of PhysicsUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEU.K.
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Li Ka Shing CentreRobinson WayCambridgeCB2 0REU.K.
| | - James Joseph
- Department of PhysicsUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEU.K.
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Li Ka Shing CentreRobinson WayCambridgeCB2 0REU.K.
| | - Sarah E Bohndiek
- Department of PhysicsUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEU.K.
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Li Ka Shing CentreRobinson WayCambridgeCB2 0REU.K.
| |
Collapse
|
9
|
Gao L, Smith RT. Optical hyperspectral imaging in microscopy and spectroscopy - a review of data acquisition. JOURNAL OF BIOPHOTONICS 2015; 8:441-456. [PMID: 25186815 DOI: 10.1002/jbio.v8.6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/10/2014] [Accepted: 07/12/2014] [Indexed: 05/24/2023]
Abstract
Rather than simply acting as a photographic camera capturing two-dimensional (x, y) intensity images or a spectrometer acquiring spectra (λ), a hyperspectral imager measures entire three-dimensional (x, y, λ) datacubes for multivariate analysis, providing structural, molecular, and functional information about biological cells or tissue with unprecedented detail. Such data also gives clinical insights for disease diagnosis and treatment. We summarize the principles underpinning this technology, highlight its practical implementation, and discuss its recent applications at microscopic to macroscopic scales. Datacube acquisition strategies in hyperspectral imaging x, y, spatial coordinates; λ, wavelength.
Collapse
Affiliation(s)
- Liang Gao
- Department of Biomedical Engineering, Washington University in St. Louis, MO, 63139.
| | - R Theodore Smith
- Department of Ophthalmology, NYU School of Medicine, New York, NY, 10016.
| |
Collapse
|
10
|
Gao L, Smith RT. Optical hyperspectral imaging in microscopy and spectroscopy - a review of data acquisition. JOURNAL OF BIOPHOTONICS 2015; 8:441-56. [PMID: 25186815 PMCID: PMC4348353 DOI: 10.1002/jbio.201400051] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/10/2014] [Accepted: 07/12/2014] [Indexed: 05/20/2023]
Abstract
Rather than simply acting as a photographic camera capturing two-dimensional (x, y) intensity images or a spectrometer acquiring spectra (λ), a hyperspectral imager measures entire three-dimensional (x, y, λ) datacubes for multivariate analysis, providing structural, molecular, and functional information about biological cells or tissue with unprecedented detail. Such data also gives clinical insights for disease diagnosis and treatment. We summarize the principles underpinning this technology, highlight its practical implementation, and discuss its recent applications at microscopic to macroscopic scales. Datacube acquisition strategies in hyperspectral imaging x, y, spatial coordinates; λ, wavelength.
Collapse
Affiliation(s)
- Liang Gao
- Department of Biomedical Engineering, Washington University in St. Louis, MO, 63139.
| | - R Theodore Smith
- Department of Ophthalmology, NYU School of Medicine, New York, NY, 10016.
| |
Collapse
|