1
|
Galli R, Uckermann O. Vibrational spectroscopy and multiphoton microscopy for label-free visualization of nervous system degeneration and regeneration. Biophys Rev 2024; 16:219-235. [PMID: 38737209 PMCID: PMC11078905 DOI: 10.1007/s12551-023-01158-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/22/2023] [Indexed: 05/14/2024] Open
Abstract
Neurological disorders, including spinal cord injury, peripheral nerve injury, traumatic brain injury, and neurodegenerative diseases, pose significant challenges in terms of diagnosis, treatment, and understanding the underlying pathophysiological processes. Label-free multiphoton microscopy techniques, such as coherent Raman scattering, two-photon excited autofluorescence, and second and third harmonic generation microscopy, have emerged as powerful tools for visualizing nervous tissue with high resolution and without the need for exogenous labels. Coherent Raman scattering processes as well as third harmonic generation enable label-free visualization of myelin sheaths, while their combination with two-photon excited autofluorescence and second harmonic generation allows for a more comprehensive tissue visualization. They have shown promise in assessing the efficacy of therapeutic interventions and may have future applications in clinical diagnostics. In addition to multiphoton microscopy, vibrational spectroscopy methods such as infrared and Raman spectroscopy offer insights into the molecular signatures of injured nervous tissues and hold potential as diagnostic markers. This review summarizes the application of these label-free optical techniques in preclinical models and illustrates their potential in the diagnosis and treatment of neurological disorders with a special focus on injury, degeneration, and regeneration. Furthermore, it addresses current advancements and challenges for bridging the gap between research findings and their practical applications in a clinical setting.
Collapse
Affiliation(s)
- Roberta Galli
- Medical Physics and Biomedical Engineering, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ortrud Uckermann
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Division of Medical Biology, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
2
|
Harris G, Rickard JJS, Butt G, Kelleher L, Blanch RJ, Cooper J, Oppenheimer PG. Review: Emerging Eye-Based Diagnostic Technologies for Traumatic Brain Injury. IEEE Rev Biomed Eng 2023; 16:530-559. [PMID: 35320105 PMCID: PMC9888755 DOI: 10.1109/rbme.2022.3161352] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/11/2022] [Accepted: 03/15/2022] [Indexed: 11/06/2022]
Abstract
The study of ocular manifestations of neurodegenerative disorders, Oculomics, is a growing field of investigation for early diagnostics, enabling structural and chemical biomarkers to be monitored overtime to predict prognosis. Traumatic brain injury (TBI) triggers a cascade of events harmful to the brain, which can lead to neurodegeneration. TBI, termed the "silent epidemic" is becoming a leading cause of death and disability worldwide. There is currently no effective diagnostic tool for TBI, and yet, early-intervention is known to considerably shorten hospital stays, improve outcomes, fasten neurological recovery and lower mortality rates, highlighting the unmet need for techniques capable of rapid and accurate point-of-care diagnostics, implemented in the earliest stages. This review focuses on the latest advances in the main neuropathophysiological responses and the achievements and shortfalls of TBI diagnostic methods. Validated and emerging TBI-indicative biomarkers are outlined and linked to ocular neuro-disorders. Methods detecting structural and chemical ocular responses to TBI are categorised along with prospective chemical and physical sensing techniques. Particular attention is drawn to the potential of Raman spectroscopy as a non-invasive sensing of neurological molecular signatures in the ocular projections of the brain, laying the platform for the first tangible path towards alternative point-of-care diagnostic technologies for TBI.
Collapse
Affiliation(s)
- Georgia Harris
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical SciencesUniversity of BirminghamB15 2TTBirminghamU.K.
| | - Jonathan James Stanley Rickard
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical SciencesUniversity of BirminghamB15 2TTBirminghamU.K.
- Department of Physics, Cavendish LaboratoryUniversity of CambridgeCB3 0HECambridgeU.K.
| | - Gibran Butt
- Ophthalmology DepartmentUniversity Hospitals Birmingham NHS Foundation TrustB15 2THBirminghamU.K.
| | - Liam Kelleher
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical SciencesUniversity of BirminghamB15 2TTBirminghamU.K.
| | - Richard James Blanch
- Department of Military Surgery and TraumaRoyal Centre for Defence MedicineB15 2THBirminghamU.K.
- Neuroscience and Ophthalmology, Department of Ophthalmology, University Hospitals Birmingham NHS Foundation TrustcBirminghamU.K.
| | - Jonathan Cooper
- School of Biomedical EngineeringUniversity of GlasgowG12 8LTGlasgowU.K.
| | - Pola Goldberg Oppenheimer
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical SciencesUniversity of BirminghamB15 2TTBirminghamU.K.
- Healthcare Technologies Institute, Institute of Translational MedicineB15 2THBirminghamU.K.
| |
Collapse
|
3
|
Moradi Tuchayi S, Wang Y, Khodorova A, Pence IJ, Evans CL, Anderson RR, Lerner EA, Woolf CJ, Garibyan L. Cryoneurolysis with Injectable Ice Slurry Modulates Mechanical Skin Pain. J Invest Dermatol 2023; 143:134-141.e1. [PMID: 35985498 DOI: 10.1016/j.jid.2022.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/30/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
Cutaneous pain is a common symptom of skin disease, and available therapies are inadequate. We developed a neural selective and injectable method of cryoneurolysis with ice slurry, which leads to a long-lasting decrease in mechanical pain. The aim of this study is to determine whether slurry injection reduces cutaneous pain without inducing the side effects associated with conventional cryoneurolysis. Using the rat sciatic nerve, we examined the effects of slurry on nerve structure and function in comparison with the effects of a Food and Drug Administration‒approved cryoneurolysis device (Iovera). Coherent anti-Stokes Raman scattering microscopy and immunofluorescence staining were used to investigate histological effects on the sciatic nerve and on downstream cutaneous nerve fibers. Complete Freund's Adjuvant model of cutaneous pain was used to study the effect of the slurry on reducing pain. Structural changes in myelin induced by slurry were comparable with those induced by Iovera, which uses much colder temperatures. Compared with that of Iovera, the decrease in mechanical pain due to slurry was less profound but lasted longer without signs of dysesthesia. Slurry did not cause a reduction of epidermal nerve fibers or a change in thermal pain sensitivity. Slurry-treated rats showed reduced cutaneous mechanical pain in response to Complete Freund's Adjuvant. Slurry injection can be used to successfully reduce cutaneous pain without causing dysesthesia.
Collapse
Affiliation(s)
- Sara Moradi Tuchayi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Ying Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Alla Khodorova
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Isaac J Pence
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Conor L Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - R Rox Anderson
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Ethan A Lerner
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA; Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, USA; Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lilit Garibyan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
4
|
Fast-acting and injectable cryoneurolysis device. Sci Rep 2022; 12:19891. [PMID: 36400878 PMCID: PMC9674623 DOI: 10.1038/s41598-022-24178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Cryoneurolysis is an opioid-sparing therapy for long-lasting and reversible reduction of pain. We developed a nerve-selective method for cryoneurolysis by local injection of ice-slurry (- 5 to - 6 °C) that induced decrease in nocifensive response starting from about a week after treatment and lasting up to 8 weeks. In this study, we test the hypothesis that injection of colder slurry leads to faster onset of analgesia. Colder slurry (- 9ºC) was injected around the rat sciatic nerve to induce cryoneurolysis. Hematoxylin and Eosin (H&E) staining was used to examine histologic effects on surrounding tissues. Coherent anti-Stokes Raman scattering (CARS) microscopy was used to study effects on myelin sheaths. Functional tests were used to assess changes in sensory and motor function in the treated hind paw. No inflammation or scarring was detected in surrounding skin and muscle tissues at day 7 post slurry injection. Functional tests showed rapid onset reduction in mechanical pain sensitivity starting from day 1 and lasting up to day 98. CARS imaging demonstrated disintegration of myelin sheaths post treatment followed by complete recovery of nerve structure by day 140. In this study we showed that colder slurry (- 9 °C) produces more rapid onset and longer duration of analgesia, while remaining nerve-selective.
Collapse
|
5
|
Moradi Tuchayi S, Wang Y, Pence IJ, Fast A, Stemmer-Rachamimov A, Evans CL, Anderson RR, Garibyan L. Full Recovery after Multiple Treatments with Injectable Ice Slurry. J Pain Res 2022; 15:2905-2910. [PMID: 36132994 PMCID: PMC9482954 DOI: 10.2147/jpr.s373421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/20/2022] [Indexed: 12/04/2022] Open
Abstract
Background Cryoneurolysis uses tissue cooling as an opioid-sparing, long-lasting treatment for peripheral nerve pain. A nerve-selective method for cryoneurolysis by local injection of ice-slurry was developed to allow cryoneurolysis to be performed with a standard needle and syringe, similar to peripheral nerve blocks. Since the treatment of patients with chronic pain may require repeated injections, we investigated the safety and tolerance of repeated treatments in a rat model. Methods Three repeated ice-slurry treatments, given 6 weeks apart were performed around the rat sciatic nerve. Nerve and surrounding tissues were collected up to 4 months after the third treatment for analysis. Coherent anti-Stokes Raman scattering (CARS) microscopy was used to study effects on myelin sheaths and axon structure. Immunofluorescence (IF) staining was used to study effects on axon density. Hematoxylin and Eosin (H&E) staining was used to examine histologic effects on sciatic nerve and surrounding tissue. Results Histologic and CARS image analysis of nerve tissue collected months after three injections demonstrated recovery of nerve structure, myelin organization and axon density to baseline levels, without any residual inflammation, scarring or neuroma formation. No inflammation or scarring was detected in surrounding skin and muscle tissues. Conclusion Repeated ice-slurry injections cause temporary, nerve-selective and reversible changes in the peripheral nerve. There was no histologic damage to surrounding skin and muscle tissues. Repeated treatments with injectable ice-slurry for cryoneurolysis appear to be safe and well tolerated. Clinical studies for patients with chronic pain are warranted.
Collapse
Affiliation(s)
- Sara Moradi Tuchayi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Ying Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Isaac J Pence
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Alex Fast
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Anat Stemmer-Rachamimov
- Massachusetts General Hospital and Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Conor L Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - R Rox Anderson
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Lilit Garibyan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Pridham G, Hossain S, Rawji KS, Zhang Y. A metric learning method for estimating myelin content based on T2-weighted MRI from a de- and re-myelination model of multiple sclerosis. PLoS One 2021; 16:e0249460. [PMID: 33819278 PMCID: PMC8021181 DOI: 10.1371/journal.pone.0249460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 03/18/2021] [Indexed: 11/19/2022] Open
Abstract
Myelin plays a critical role in the pathogenesis of neurological disorders but is difficult to characterize in vivo using standard analysis methods. Our goal was to develop a novel analytical framework for estimating myelin content using T2-weighted magnetic resonance imaging (MRI) based on a de- and re-myelination model of multiple sclerosis. We examined 18 mice with lysolecithin induced demyelination and spontaneous remyelination in the ventral white matter of thoracic spinal cord. Cohorts of 6 mice underwent 9.4T MRI at days 7 (peak demyelination), 14 (ongoing recovery), and 28 (near complete recovery), as well as histological analysis of myelin and the associated cellularity at corresponding timepoints. Our MRI framework took an unsupervised learning approach, including tissue segmentation using a Gaussian Markov random field (GMRF), and myelin and cellularity feature estimation based on the Mahalanobis distance. For comparison, we also investigated 2 regression-based supervised learning approaches, one using our GMRF results, and another using a freely available generalized additive model (GAM). Results showed that GMRF segmentation was 73.2% accurate, and our unsupervised learning method achieved a correlation coefficient of 0.67 (top quartile: 0.78) with histological myelin, similar to 0.70 (top quartile: 0.78) obtained using supervised analyses. Further, the area under the receiver operator characteristic curve of our unsupervised myelin feature (0.883, 95% CI: 0.874-0.891) was significantly better than any of the supervised models in detecting white matter myelin as compared to histology. Collectively, metric learning using standard MRI may prove to be a new alternative method for estimating myelin content, which ultimately can improve our disease monitoring ability in a clinical setting.
Collapse
Affiliation(s)
- Glen Pridham
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Shahnewaz Hossain
- Department of Medical Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Khalil S. Rawji
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Yunyan Zhang
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
7
|
Abstract
BACKGROUND Postoperative pain caused by trauma to nerves and tissue around the surgical site is a major problem. Perioperative steps to reduce postoperative pain include local anesthetics and opioids, the latter of which are addictive and have contributed to the opioid epidemic. Cryoneurolysis is a nonopioid and long-lasting treatment for reducing postoperative pain. However, current methods of cryoneurolysis are invasive, technically demanding, and are not tissue-selective. This project aims to determine whether ice slurry can be used as a novel, injectable, drug-free, and tissue-selective method of cryoneurolysis and resulting analgesia. METHODS The authors developed an injectable and selective method of cryoneurolysis using biocompatible ice slurry, using rat sciatic nerve to investigate the effect of slurry injection on the structure and function of the nerve. Sixty-two naïve, male Sprague-Dawley rats were used in this study. Advanced Coherent anti-Stokes Raman Scattering microscopy, light, and fluorescent microscopy imaging were used at baseline and at various time points after treatment for evaluation and quantification of myelin sheath and axon structural integrity. Validated motor and sensory testing were used for evaluating the sciatic nerve function in response to ice slurry treatment. RESULTS Ice slurry injection can selectively target the rat sciatic nerve. Being injectable, it can infiltrate around the nerve. The authors demonstrate that a single injection is safe and selective for reversibly disrupting the myelin sheaths and axon density, with complete structural recovery by day 112. This leads to decreased nocifensive function for up to 60 days, with complete recovery by day 112. There was up to median [interquartile range]: 68% [60 to 94%] reduction in mechanical pain response after treatment. CONCLUSIONS Ice slurry injection selectively targets the rat sciatic nerve, causing no damage to surrounding tissue. Injection of ice slurry around the rat sciatic nerve induced decreased nociceptive response from the baseline through neural selective cryoneurolysis.
Collapse
|
8
|
Naud R, Longtin A. Linking demyelination to compound action potential dispersion with a spike-diffuse-spike approach. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2019; 9:3. [PMID: 31147800 PMCID: PMC6542900 DOI: 10.1186/s13408-019-0071-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
To establish and exploit novel biomarkers of demyelinating diseases requires a mechanistic understanding of axonal propagation. Here, we present a novel computational framework called the stochastic spike-diffuse-spike (SSDS) model for assessing the effects of demyelination on axonal transmission. It models transmission through nodal and internodal compartments with two types of operations: a stochastic integrate-and-fire operation captures nodal excitability and a linear filtering operation describes internodal propagation. The effects of demyelinated segments on the probability of transmission, transmission delay and spike time jitter are explored. We argue that demyelination-induced impedance mismatch prevents propagation mostly when the action potential leaves a demyelinated region, not when it enters a demyelinated region. In addition, we model sodium channel remodeling as a homeostatic control of nodal excitability. We find that the effects of mild demyelination on transmission probability and delay can be largely counterbalanced by an increase in excitability at the nodes surrounding the demyelination. The spike timing jitter, however, reflects the level of demyelination whether excitability is fixed or is allowed to change in compensation. This jitter can accumulate over long axons and leads to a broadening of the compound action potential, linking microscopic defects to a mesoscopic observable. Our findings articulate why action potential jitter and compound action potential dispersion can serve as potential markers of weak and sporadic demyelination.
Collapse
Affiliation(s)
- Richard Naud
- Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Department of Physics, University of Ottawa, Ottawa, Canada
| | - André Longtin
- Department of Physics, University of Ottawa, Ottawa, Canada
| |
Collapse
|
9
|
Sharma S, Laule C, Moore GRW, Li DKB, Zhang Y. Correlating new directional measures of myelin and axonal integrity in T2-weighted MRI with quantitative histology in multiple sclerosis. J Neurosci Methods 2019; 311:369-376. [PMID: 30240805 DOI: 10.1016/j.jneumeth.2018.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Imaging measurement of structure alignment has shown increasing importance in determining tissue properties. It is not known if a similar ability for characterizing neuropathology exists. NEW METHODS This study aimed to validate a new alignment-assessing method for measuring myelin and axonal properties using quantitative histological metrics. The new method involved analysis of the Fourier transform (FT) power spectrum in standard magnetic resonance imaging (MRI). T2-weighted MRI were collected from 10 post-mortem multiple sclerosis (MS) brain samples. Three tissue types were examined: lesions, diffusely abnormal white matter, and normal appearing white matter. MRI analysis included computing the FT power spectrum; extracting alignment histograms; and calculating dominant orientation and alignment complexity (angular entropy). Post MRI, the brain samples were processed for myelin and axonal staining, and the stained images were used to derive quantitative orientation measures using structure tensor analysis for MRI comparison. RESULTS There were significant differences in orientation metrics between tissue types in both MRI and histology, and MRI measurements correlated strongly with histological indices. Moreover, the joint effect of myelin and axonal entropy explained over 95% of the variance of MRI angular entropy. COMPARISON WITH EXISTING METHOD There is no established method for characterizing myelin and axonal pathology using standard MRI. Advanced MRI methods have the potential to do this but are still in research development and are not yet routinely acquired in clinical practice. CONCLUSIONS Alignment measurement using clinical MRI scans may become a valuable new method for characterizing myelin and axonal properties in MS patients.
Collapse
Affiliation(s)
- Shrushrita Sharma
- Department of Radiology, University of Calgary, Alberta, Canada; Department of Clinical Neurosciences, University of Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Cornelia Laule
- Department of Radiology, University of British Columbia, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, British Columbia, Canada; International Collaboration on Repair Discoveries (ICORD), University of British Columbia, British Columbia, Canada; Department of Physics & Astronomy, University of British Columbia, British Columbia, Canada
| | - G R Wayne Moore
- Department of Pathology and Laboratory Medicine, University of British Columbia, British Columbia, Canada; International Collaboration on Repair Discoveries (ICORD), University of British Columbia, British Columbia, Canada
| | - David K B Li
- Department of Radiology, University of British Columbia, British Columbia, Canada
| | - Yunyan Zhang
- Department of Radiology, University of Calgary, Alberta, Canada; Department of Clinical Neurosciences, University of Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta, Canada.
| |
Collapse
|
10
|
Lipid Order Degradation in Autoimmune Demyelination Probed by Polarized Coherent Raman Microscopy. Biophys J 2017; 113:1520-1530. [PMID: 28978445 DOI: 10.1016/j.bpj.2017.07.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/23/2017] [Accepted: 07/26/2017] [Indexed: 01/15/2023] Open
Abstract
Myelin around axons is currently widely studied by structural analyses and large-scale imaging techniques, with the goal to decipher its critical role in neuronal protection. Although there is strong evidence that in myelin, lipid composition, and lipid membrane morphology are affected during the progression of neurodegenerative diseases, there is no quantitative method yet to report its ultrastructure in tissues at both molecular and macroscopic levels, in conditions potentially compatible with in vivo observations. In this work, we study and quantify the molecular order of lipids in myelin at subdiffraction scales, using label-free polarization-resolved coherent anti-Stokes Raman, which exploits coherent anti-Stokes Raman sensitivity to coupling between light polarization and oriented molecular vibrational bonds. Importantly, the method does not use any a priori parameters in the sample such as lipid type, orientational organization, and composition. We show that lipid molecular order of myelin in the mouse spinal cord is significantly reduced throughout the progression of experimental autoimmune encephalomyelitis, a model for multiple sclerosis, even in myelin regions that appear morphologically unaffected. This technique permits us to unravel molecular-scale perturbations of lipid layers at an early stage of the demyelination progression, whereas the membrane architecture at the mesoscopic scale (here ∼100 nm) seems much less affected. Such information cannot be brought by pure morphological observation and, to our knowledge, brings a new perspective to molecular-scale understanding of neurodegenerative diseases.
Collapse
|
11
|
Sharma S, Zhang Y. Fourier transform power spectrum is a potential measure of tissue alignment in standard MRI: A multiple sclerosis study. PLoS One 2017; 12:e0175979. [PMID: 28414816 PMCID: PMC5393867 DOI: 10.1371/journal.pone.0175979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/03/2017] [Indexed: 12/11/2022] Open
Abstract
Loss of tissue coherency in brain white matter is found in many neurological diseases such as multiple sclerosis (MS). While several approaches have been proposed to evaluate white matter coherency including fractional anisotropy and fiber tracking in diffusion-weighted imaging, few are available for standard magnetic resonance imaging (MRI). Here we present an image post-processing method for this purpose based on Fourier transform (FT) power spectrum. T2-weighted images were collected from 19 patients (10 relapsing-remitting and 9 secondary progressive MS) and 19 age- and gender-matched controls. Image processing steps included: computation, normalization, and thresholding of FT power spectrum; determination of tissue alignment profile and dominant alignment direction; and calculation of alignment complexity using a new measure named angular entropy. To test the validity of this method, we used a highly organized brain white matter structure, corpus callosum. Six regions of interest were examined from the left, central and right aspects of both genu and splenium. We found that the dominant orientation of each ROI derived from our method was significantly correlated with the predicted directions based on anatomy. There was greater angular entropy in patients than controls, and a trend to be greater in secondary progressive MS patients. These findings suggest that it is possible to detect tissue alignment and anisotropy using traditional MRI, which are routinely acquired in clinical practice. Analysis of FT power spectrum may become a new approach for advancing the evaluation and management of patients with MS and similar disorders. Further confirmation is warranted.
Collapse
Affiliation(s)
- Shrushrita Sharma
- Biomedical Engineering Program, Faculty of Graduate Studies, University of Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Yunyan Zhang
- Biomedical Engineering Program, Faculty of Graduate Studies, University of Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
- Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
- Department of Radiology, University of Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
12
|
Rougon G, Brasselet S, Debarbieux F. Advances in Intravital Non-Linear Optical Imaging of the Central Nervous System in Rodents. Brain Plast 2016; 2:31-48. [PMID: 29765847 PMCID: PMC5928564 DOI: 10.3233/bpl-160028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose of review: Highly coordinated cellular interactions occur in the healthy or pathologic adult rodent central nervous system (CNS). Until recently, technical challenges have restricted the analysis of these events to largely static modes of study such as immuno-fluorescence and electron microscopy on fixed tissues. The development of intravital imaging with subcellular resolution is required to probe the dynamics of these events in their natural context, the living brain. Recent findings: This review focuses on the recently developed live non-linear optical imaging modalities, the core principles involved, the identified technical challenges that limit their use and the scope of their applications. We highlight some practical applications for these modalities with a specific attention given to Experimental Autoimmune Encephalomyelitis (EAE), a rodent model of a chronic inflammatory disease of the CNS characterized by the formation of disseminated demyelinating lesions accompanied by axonal degeneration. Summary: We conclude that label-free nonlinear optical imaging combined to two photon imaging will continue to contribute richly to comprehend brain function and pathogenesis and to develop effective therapeutic strategies.
Collapse
Affiliation(s)
- Geneviève Rougon
- Aix-Marseille Université, CNRS, Institut des Neurosciences de la Timone, UMR 7289, Marseille, France
| | - Sophie Brasselet
- Aix-Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, UMR 7249, Marseille, France
| | - Franck Debarbieux
- Aix-Marseille Université, CNRS, Institut des Neurosciences de la Timone, UMR 7289, Marseille, France
| |
Collapse
|
13
|
Wang F, Bélanger E, Paquet ME, Côté DC, De Koninck Y. Probing pain pathways with light. Neuroscience 2016; 338:248-271. [PMID: 27702648 DOI: 10.1016/j.neuroscience.2016.09.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 02/06/2023]
Abstract
We have witnessed an accelerated growth of photonics technologies in recent years to enable not only monitoring the activity of specific neurons, while animals are performing certain types of behavior, but also testing whether specific cells, circuits, and regions are sufficient or necessary for initiating, maintaining, or altering this or that behavior. Compared to other sensory systems, however, such as the visual or olfactory system, photonics applications in pain research are only beginning to emerge. One reason pain studies have lagged behind is that many of the techniques originally developed cannot be directly implemented to study key relay sites within pain pathways, such as the skin, dorsal root ganglia, spinal cord, and brainstem. This is due, in part, to difficulties in accessing these structures with light. Here we review a number of recent advances in design and delivery of light-sensitive molecular probes (sensors and actuators) into pain relay circuits to help decipher their structural and functional organization. We then discuss several challenges that have hampered hardware access to specific structures including light scattering, tissue movement and geometries. We review a number of strategies to circumvent these challenges, by delivering light into, and collecting it from the different key sites to unravel how nociceptive signals are encoded at each level of the neuraxis. We conclude with an outlook on novel imaging modalities for label-free chemical detection and opportunities for multimodal interrogation in vivo. While many challenges remain, these advances offer unprecedented opportunities to bridge cellular approaches with context-relevant behavioral testing, an essential step toward improving translation of basic research findings into clinical applications.
Collapse
Affiliation(s)
- Feng Wang
- Institut universitaire en santé mentale de Québec, Université Laval, Québec, QC, Canada
| | - Erik Bélanger
- Institut universitaire en santé mentale de Québec, Université Laval, Québec, QC, Canada; Centre d'optique, photonique et laser, Université Laval, Québec, QC, Canada
| | - Marie-Eve Paquet
- Institut universitaire en santé mentale de Québec, Université Laval, Québec, QC, Canada; Département de biochimie, microbiologie et bioinformatique, Université Laval, Québec, QC, Canada
| | - Daniel C Côté
- Institut universitaire en santé mentale de Québec, Université Laval, Québec, QC, Canada; Centre d'optique, photonique et laser, Université Laval, Québec, QC, Canada; Département de physique, de génie physique et d'optique, Université Laval, Québec, QC, Canada
| | - Yves De Koninck
- Institut universitaire en santé mentale de Québec, Université Laval, Québec, QC, Canada; Centre d'optique, photonique et laser, Université Laval, Québec, QC, Canada; Département de psychiatrie et neurosciences, Université Laval, Québec, QC, Canada.
| |
Collapse
|
14
|
Wang K, Wang Y, Liang R, Wang J, Qiu P. Contributed Review: A new synchronized source solution for coherent Raman scattering microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:071501. [PMID: 27475540 DOI: 10.1063/1.4955474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/25/2016] [Indexed: 06/06/2023]
Abstract
Based on vibrational spectroscopy, coherent Raman Scattering (CRS) microscopy allows label-free imaging of biological and chemical samples with endogenous image contrast. Two-color, synchronized picosecond pulses are typically used for high spectral resolution imaging, which in turn constitutes a dramatic laser source challenge for CRS microscopy. Recently, synchronized time-lens source, inspired from ultrafast optical signal processing, has emerged as a promising laser source solution and has found application in various modalities of CRS microscopy. Time-lens is based on space-time analogy, which uses a "lens" in the time domain to compress long optical pulses or even continuous waves to ultrashort pulses, mimicking a lens in the space domain. Phase and intensity modulators driven with electrical signals are used in the time-lens source for picosecond pulse generation. As a result, the time-lens source is highly versatile and naturally compatible with modulation capabilities. More importantly, if the electrical signals used to drive the time-lens source are derived from other laser sources, such as mode-locked lasers, then synchronization between them can be realized, underlying the physics of a synchronized time-lens source. In this paper, we review recent progress on the basic principle, design of the synchronized time-lens source, and its applications to CRS microscopy of both biological and chemical samples.
Collapse
Affiliation(s)
- Ke Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yuxin Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Runfu Liang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiaqi Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ping Qiu
- College of Physics and Energy, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
15
|
Huser T, Chan J. Raman spectroscopy for physiological investigations of tissues and cells. Adv Drug Deliv Rev 2015; 89:57-70. [PMID: 26144996 DOI: 10.1016/j.addr.2015.06.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 06/08/2015] [Accepted: 06/26/2015] [Indexed: 12/29/2022]
Abstract
Raman micro-spectroscopy provides a convenient non-destructive and location-specific means of probing cellular physiology and tissue physiology at sub-micron length scales. By probing the vibrational signature of molecules and molecular groups, the distribution and metabolic products of small molecules that cannot be labeled with fluorescent dyes can be analyzed. This method works well for molecular concentrations in the micro-molar range and has been demonstrated as a valuable tool for monitoring drug-cell interactions. If the small molecule of interest does not contain groups that would allow for a discrimination against cytoplasmic background signals, "labeling" of the molecule by isotope substitution or by incorporating other unique small groups, e.g. alkynes provides a stable signal even for time-lapse imaging such compounds in living cells. In this review we highlight recent progress in assessing the physiology of cells and tissue by Raman spectroscopy and imaging.
Collapse
|
16
|
Schie IW, Krafft C, Popp J. Applications of coherent Raman scattering microscopies to clinical and biological studies. Analyst 2015; 140:3897-909. [PMID: 25811305 DOI: 10.1039/c5an00178a] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Coherent anti-Stokes Raman scattering (CARS) microscopy and stimulated Raman scattering (SRS) microscopy are two nonlinear optical imaging modalities that are at the frontier of label-free and chemical specific biological and clinical diagnostics. The applications of coherent Raman scattering (CRS) microscopies are multifold, ranging from investigation of basic aspects of cell biology to the label-free detection of pathologies. This review summarizes recent progress of biological and clinical applications of CRS between 2008 and 2014, covering applications such as lipid droplet research, single cell analysis, tissue imaging and multiphoton histopathology of atherosclerosis, myelin sheaths, skin, hair, pharmaceutics, and cancer and surgical margin detection.
Collapse
Affiliation(s)
- Iwan W Schie
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany.
| | | | | |
Collapse
|
17
|
Bégin S, Dupont-Therrien O, Bélanger E, Daradich A, Laffray S, De Koninck Y, Côté DC. Automated method for the segmentation and morphometry of nerve fibers in large-scale CARS images of spinal cord tissue. BIOMEDICAL OPTICS EXPRESS 2014; 5:4145-4161. [PMID: 25574428 PMCID: PMC4285595 DOI: 10.1364/boe.5.004145] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/26/2014] [Accepted: 10/02/2014] [Indexed: 06/04/2023]
Abstract
A fully automated method for large-scale segmentation of nerve fibers from coherent anti-Stokes Raman scattering (CARS) microscopy images is presented. The method is specifically designed for CARS images of transverse cross sections of nervous tissue but is also suitable for use with standard light microscopy images. After a detailed description of the two-part segmentation algorithm, its accuracy is quantified by comparing the resulting binary images to manually segmented images. We then demonstrate the ability of our method to retrieve morphological data from CARS images of nerve tissue. Finally, we present the segmentation of a large mosaic of CARS images covering more than half the area of a mouse spinal cord cross section and show evidence of clusters of neurons with similar g-ratios throughout the spinal cord.
Collapse
Affiliation(s)
- Steve Bégin
- Centre de recherche de l’Institut universitaire en santé mentale de Québec (CRIUSMQ), Université Laval, Québec,
Canada
- Département de physique, génie physique et optique, Université Laval, Québec,
Canada
- Centre d’optique, photonique et laser (COPL), Université Laval, Québec,
Canada
| | - Olivier Dupont-Therrien
- Centre de recherche de l’Institut universitaire en santé mentale de Québec (CRIUSMQ), Université Laval, Québec,
Canada
- Centre d’optique, photonique et laser (COPL), Université Laval, Québec,
Canada
| | - Erik Bélanger
- Centre de recherche de l’Institut universitaire en santé mentale de Québec (CRIUSMQ), Université Laval, Québec,
Canada
- Département de physique, génie physique et optique, Université Laval, Québec,
Canada
- Centre d’optique, photonique et laser (COPL), Université Laval, Québec,
Canada
| | - Amy Daradich
- Centre de recherche de l’Institut universitaire en santé mentale de Québec (CRIUSMQ), Université Laval, Québec,
Canada
- Département de physique, génie physique et optique, Université Laval, Québec,
Canada
- Centre d’optique, photonique et laser (COPL), Université Laval, Québec,
Canada
| | - Sophie Laffray
- Centre de recherche de l’Institut universitaire en santé mentale de Québec (CRIUSMQ), Université Laval, Québec,
Canada
- Centre d’optique, photonique et laser (COPL), Université Laval, Québec,
Canada
| | - Yves De Koninck
- Centre de recherche de l’Institut universitaire en santé mentale de Québec (CRIUSMQ), Université Laval, Québec,
Canada
- Département de psychiatrie et de neurosciences, Université Laval, Québec,
Canada
| | - Daniel C. Côté
- Centre de recherche de l’Institut universitaire en santé mentale de Québec (CRIUSMQ), Université Laval, Québec,
Canada
- Département de physique, génie physique et optique, Université Laval, Québec,
Canada
- Centre d’optique, photonique et laser (COPL), Université Laval, Québec,
Canada
| |
Collapse
|
18
|
de Vito G, Tonazzini I, Cecchini M, Piazza V. RP-CARS: label-free optical readout of the myelin intrinsic healthiness. OPTICS EXPRESS 2014; 22:13733-43. [PMID: 24921566 DOI: 10.1364/oe.22.013733] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Here we present a method based on Rotating-Polarization Coherent Anti-Stokes Raman Scattering (RP-CARS) imaging to assess the myelin health status in mouse sciatic nerves. Differently from the existing techniques, our method is based on the readout of intrinsic molecular architecture rather than on the image analysis, relying on the fact that healthy myelin is characterized by a high degree of molecular order. We exploit RP-CARS imaging to demonstrate that the degree of spatial anisotropy of the CARS signal displays a strong correlation with the g-ratio (a well-known image-based index of myelin damage) in a chemical-damage model and therefore that the former is a good indicator for the local myelin health status.
Collapse
|
19
|
Upputuri PK, Gong L, Wang H. Chirped time-resolved CARS microscopy with square-pulse excitation. OPTICS EXPRESS 2014; 22:9611-26. [PMID: 24787849 DOI: 10.1364/oe.22.009611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Time-resolved coherent anti-Stokes Raman scattering (T-CARS) microscopy is a technique known for suppressing non-resonant background by utilizing the different temporal responses of virtual electronic transitions and Raman transitions. However, the previous use of femtosecond excitations in T-CARS microscopy has led to low spectral resolution and difficulty in selectively exciting a single Raman band. Here, we report an improved T-CARS imaging technique with chirped pump and Stokes excitations, and the Stokes pulses were shaped into square pulses. Using a femtosecond probe, we acquired T-CARS images with a high spectral resolution, suppressed non-resonant background, and high resonant signal level. We experimentally demonstrated the selective excitation of two close Raman bands of polystyrene at 1005 cm(-1) and 1035 cm(-1) using our technique; conventional T-CARS would inevitably excite them both with little selectivity. Our novel technique could become an ideal method for high-sensitivity, background-free imaging of single Raman bands for a wide variety of samples.
Collapse
|