1
|
Chang S, Krzyzanowska H, Bowden AK. Label-Free Optical Technologies to Enhance Noninvasive Endoscopic Imaging of Early-Stage Cancers. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:289-311. [PMID: 38424030 DOI: 10.1146/annurev-anchem-061622-014208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
White light endoscopic imaging allows for the examination of internal human organs and is essential in the detection and treatment of early-stage cancers. To facilitate diagnosis of precancerous changes and early-stage cancers, label-free optical technologies that provide enhanced malignancy-specific contrast and depth information have been extensively researched. The rapid development of technology in the past two decades has enabled integration of these optical technologies into clinical endoscopy. In recent years, the significant advantages of using these adjunct optical devices have been shown, suggesting readiness for clinical translation. In this review, we provide an overview of the working principles and miniaturization considerations and summarize the clinical and preclinical demonstrations of several such techniques for early-stage cancer detection. We also offer an outlook for the integration of multiple technologies and the use of computer-aided diagnosis in clinical endoscopy.
Collapse
Affiliation(s)
- Shuang Chang
- 1Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, Tennessee, USA;
- 2Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Halina Krzyzanowska
- 1Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, Tennessee, USA;
- 2Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Audrey K Bowden
- 1Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, Tennessee, USA;
- 2Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- 3Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Haugen EJ, Throckmorton GA, Walter AB, Mahadevan-Jansen A, Baba JS. Measurement of rat and human tissue optical properties for improving the optical detection and visualization of peripheral nerves. BIOMEDICAL OPTICS EXPRESS 2023; 14:2839-2856. [PMID: 37342709 PMCID: PMC10278628 DOI: 10.1364/boe.488761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/29/2023] [Accepted: 04/30/2023] [Indexed: 06/23/2023]
Abstract
Peripheral nerve damage frequently occurs in challenging surgical cases resulting in high costs and morbidity. Various optical techniques have proven effective in detecting and visually enhancing nerves, demonstrating their translational potential for assisting in nerve-sparing medical procedures. However, there is limited data characterizing the optical properties of nerves in comparison to surrounding tissues, thus limiting the optimization of optical nerve detection systems. To address this gap, the absorption and scattering properties of rat and human nerve, muscle, fat, and tendon were determined from 352-2500 nm. The optical properties highlighted an ideal region in the shortwave infrared for detecting embedded nerves, which remains a significant challenge for optical approaches. A 1000-1700 nm hyperspectral diffuse reflectance imaging system was used to confirm these results and identify optimal wavelengths for nerve imaging contrast in an in vivo rat model. Optimal nerve visualization contrast was achieved using 1190/1100 nm ratiometric imaging and was sustained for nerves embedded under ≥600 µm of fat and muscle. Overall, the results provide valuable insights for optimizing the optical contrast of nerves, including those embedded in tissue, which could lead to improved surgical guidance and nerve-sparing outcomes.
Collapse
Affiliation(s)
- Ezekiel J. Haugen
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Graham A. Throckmorton
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Alec B. Walter
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Anita Mahadevan-Jansen
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Justin S. Baba
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Yaya Scientific, LLC, Nashville, TN, USA
| |
Collapse
|
3
|
Milenko K, Yerolatsitis S, Aksnes A, Hjelme DR, Stone JM. Micro-Lensed Negative-Curvature Fibre Probe for Raman Spectroscopy. SENSORS 2021; 21:s21248434. [PMID: 34960527 PMCID: PMC8708690 DOI: 10.3390/s21248434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 11/16/2022]
Abstract
We developed a novel miniature micro-lensed fibre probe for Raman spectroscopy. The fibre probe consists of a single negative-curvature fibre (NCF) and a spliced, cleaved, micro-lensed fibre cap. Using a single NCF, we minimized the Raman background generated from the silica and maintained the diameter of the probe at less than 0.5 mm. In addition, the cap provided fibre closure by blocking the sample from entering the hollow parts of the fibre, enabling the use of the probe in in vivo applications. Moreover, the micro-lensed cap offered an improved collection efficiency (1.5-times increase) compared to a cleaved end-cap. The sensing capabilities of the micro-lensed probe were demonstrated by measuring different concentrations of glucose in aqueous solutions.
Collapse
Affiliation(s)
- Karolina Milenko
- Department of Electronic Systems, Norwegian University of Science and Technology, O.S. Bragstads Plass 2b, 7034 Trondheim, Norway; (A.A.); (D.R.H.)
- SINTEF Microsystems and Nanotechnology, Gaustadalleen 23C, 0737 Oslo, Norway
- Correspondence:
| | | | - Astrid Aksnes
- Department of Electronic Systems, Norwegian University of Science and Technology, O.S. Bragstads Plass 2b, 7034 Trondheim, Norway; (A.A.); (D.R.H.)
| | - Dag Roar Hjelme
- Department of Electronic Systems, Norwegian University of Science and Technology, O.S. Bragstads Plass 2b, 7034 Trondheim, Norway; (A.A.); (D.R.H.)
| | - James M. Stone
- Department of Physics, University of Bath, Bath BA2 7AY, UK; (S.Y.); (J.M.S.)
| |
Collapse
|
4
|
Assessment of Skin Deep Layer Biochemical Profile Using Spatially Offset Raman Spectroscopy. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11209498] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Skin cancer is currently the most common type of cancer with millions of cases diagnosed worldwide yearly. The current gold standard for clinical diagnosis of skin cancer is an invasive and relatively time-consuming procedure, consisting of visual examination followed by biopsy collection and histopathological analysis. Raman spectroscopy has been shown to efficiently aid the non-invasive diagnosis of skin cancer when probing the surface of the skin. In this study, we employ a recent development of Raman spectroscopy (Spatially Offset Raman Spectroscopy, SORS) which is able to look deeper in tissue and create a deep layer biochemical profile of the skin in areas where cancer lesions subtly evolve. After optimizing the measurement parameters on skin tissue phantoms, we then adopted SORS on human skin tissue from different anatomical areas to investigate the contribution of the different skin layers to the recorded Raman signal. Our results show that using a diffuse beam with zero offset to probe a sampling volume where the lesion is typically included (surface to epidermis-dermis junction), provides the optimum signal-to-noise ratio (SNR) and may be employed in future skin cancer screening applications.
Collapse
|
5
|
Fales AM, Ilev IK, Pfefer TJ. Evaluation of standardized performance test methods for biomedical Raman spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2021; 27:JBO-210201SSR. [PMID: 34713648 PMCID: PMC8551908 DOI: 10.1117/1.jbo.27.7.074705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/07/2021] [Indexed: 05/06/2023]
Abstract
SIGNIFICANCE Raman spectroscopy has emerged as a promising technique for a variety of biomedical applications. The unique ability to provide molecular specific information offers insight to the underlying biochemical changes that result in disease states such as cancer. However, one of the hurdles to successful clinical translation is a lack of international standards for calibration and performance assessment of modern Raman systems used to interrogate biological tissue. AIM To facilitate progress in the clinical translation of Raman-based devices and assist the scientific community in reaching a consensus regarding best practices for performance testing. APPROACH We reviewed the current literature and available standards documents to identify methods commonly used for bench testing of Raman devices (e.g., relative intensity correction, wavenumber calibration, noise, resolution, and sensitivity). Additionally, a novel 3D-printed turbid phantom was used to assess depth sensitivity. These approaches were implemented on three fiberoptic-probe-based Raman systems with different technical specifications. RESULTS While traditional approaches demonstrated fundamental differences due to detectors, spectrometers, and data processing routines, results from the turbid phantom illustrated the impact of illumination-collection geometry on measurement quality. CONCLUSIONS Specifications alone are necessary but not sufficient to predict in vivo performance, highlighting the need for phantom-based test methods in the standardized evaluation of Raman devices.
Collapse
Affiliation(s)
- Andrew M. Fales
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States
| | - Ilko K. Ilev
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States
| | - T. Joshua Pfefer
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States
| |
Collapse
|