1
|
Borella Y, Danielsen N, Markle EM, Snyder VC, Lee DMW, Zhang M, Eller AW, Chhablani J, Paques M, Rossi EA. Are the Hypo-Reflective Clumps Associated With Age-Related Macular Degeneration in Adaptive Optics Ophthalmoscopy Autofluorescent? Invest Ophthalmol Vis Sci 2024; 65:28. [PMID: 39167400 PMCID: PMC11343010 DOI: 10.1167/iovs.65.10.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/03/2024] [Indexed: 08/23/2024] Open
Abstract
Purpose Hypo-reflective clumps (HRCs) are structures associated with age-related macular degeneration (AMD) that were identified using flood-illumination adaptive optics ophthalmoscopy (FIAO) and hypothesized to be either macrophages that have accumulated melanin through the phagocytosis of retinal pigmented epithelial (RPE) cell organelles or transdifferentiated RPE cells. HRCs may be autofluorescent (AF) in the near infrared (NIR) but clinical NIR autofluorescence imaging lacks the resolution to answer this question definitively. Here, we used near infrared autofluorescence (NIRAF) imaging in fluorescence adaptive optics scanning laser ophthalmoscopy (AOSLO) to determine whether HRCs are AF. Methods Patients with AMD and HRCs underwent imaging with FIAO, optical coherence tomography (OCT), and multi-modal AOSLO (confocal, NIRAF, and non-confocal multi-offset detection using a fiber bundle). HRCs were segmented on FIAO and images, co-registered across modalities, and HRC morphometry and AF were quantified. Results Eight patients participated (mean age = 79 years, standard deviation [SD] = 5.7, range = 69-89 years, and 5 female patients). Most HRCs (86%, n = 153/178) were autofluorescent on AOSLO. HRC AF signal varied but most uniformly dark HRCs on FIAO showed corresponding AF on AOSLO, whereas heterogeneous HRCs showed a smaller AF area or no AF. Conclusions These findings are consistent with the hypothesis that HRCs contain AF RPE organelles. A small proportion of HRCs were not AF; these may represent macrophages that have not yet accumulated enough organelles to become AF. HRCs may have clinical significance but further study is needed to understand the interplay among HRCs, RPE cells, and macrophages, and their relationship to geographic atrophy (GA) progression in AMD.
Collapse
Affiliation(s)
- Ysé Borella
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Vision Institute, 15-20 National Ophthalmology Hospital, Clinical Investigation Center 1423 and Sorbonne University, Paris, France
| | - Natalie Danielsen
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, United States
| | - Evelyn M. Markle
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Valerie C. Snyder
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Daniel M. W. Lee
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, United States
| | - Min Zhang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Andrew W. Eller
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Jay Chhablani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Michel Paques
- Vision Institute, 15-20 National Ophthalmology Hospital, Clinical Investigation Center 1423 and Sorbonne University, Paris, France
| | - Ethan A. Rossi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
2
|
Moon B, Linebach G, Yang A, Jenks SK, Rucci M, Poletti M, Rolland JP. High refresh rate display for natural monocular viewing in AOSLO psychophysics experiments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.26.595808. [PMID: 38854135 PMCID: PMC11160679 DOI: 10.1101/2024.05.26.595808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
By combining an external display operating at 360 frames per second with an Adaptive Optics Scanning Laser Ophthalmoscope (AOSLO) for human foveal imaging, we demonstrate color stimulus delivery at high spatial and temporal resolution in AOSLO psychophysics experiments. A custom pupil relay enables viewing of the stimulus through a 3-mm effective pupil diameter and provides refractive error correction from -8 to +4 diopters. Performance of the assembled and aligned pupil relay was validated by measuring the wavefront error across the field of view and correction range, and the as-built Strehl ratio was 0.64 or better. High-acuity stimuli were rendered on the external display and imaged through the pupil relay to demonstrate that spatial frequencies up to 54 cycles per degree, corresponding to 20/11 visual acuity, are resolved. The completed external display was then used to render fixation markers across the field of view of the monitor, and a continuous retinal montage spanning 9.4 by 5.4 degrees of visual angle was acquired with the AOSLO. We conducted eye-tracking experiments during free-viewing and high-acuity tasks with polychromatic images presented on the external display. Sub-arcminute eye position uncertainty was achieved, enabling precise localization of the line of sight on the monitor while simultaneously imaging the fine structure of the human central fovea. This high refresh rate display overcomes the temporal, spectral, and field of view limitations of AOSLO-based stimulus presentation, enabling natural monocular viewing of stimuli in psychophysics experiments conducted with AOSLO.
Collapse
|
3
|
Wei F, Li CY, Hagan K, Stinnett SS, Kuo AN, Izatt JA, Dhalla AH. Spiral scanning improves subject fixation in widefield retinal imaging. OPTICS LETTERS 2024; 49:2489-2492. [PMID: 38691751 PMCID: PMC11068122 DOI: 10.1364/ol.517088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/02/2024] [Indexed: 05/03/2024]
Abstract
Point scanning retinal imaging modalities, including confocal scanning light ophthalmoscopy (cSLO) and optical coherence tomography, suffer from fixational motion artifacts. Fixation targets, though effective at reducing eye motion, are infeasible in some applications (e.g., handheld devices) due to their bulk and complexity. Here, we report on a cSLO device that scans the retina in a spiral pattern under pseudo-visible illumination, thus collecting image data while simultaneously projecting, into the subject's vision, the image of a bullseye, which acts as a virtual fixation target. An imaging study of 14 young adult volunteers was conducted to compare the fixational performance of this technique to that of raster scanning, with and without a discrete inline fixation target. Image registration was used to quantify subject eye motion; a strip-wise registration method was used for raster scans, and a novel, to the best of our knowledge, ring-based method was used for spiral scans. Results indicate a statistically significant reduction in eye motion by the use of spiral scanning as compared to raster scanning without a fixation target.
Collapse
Affiliation(s)
- Franklin Wei
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Claire Y. Li
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Kristen Hagan
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Sandra S. Stinnett
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27708, USA
| | - Anthony N. Kuo
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27708, USA
| | - Joseph A. Izatt
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27708, USA
| | - Al-Hafeez Dhalla
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27708, USA
| |
Collapse
|
4
|
Gofas-Salas E, Lee DMW, Rondeau C, Grieve K, Rossi EA, Paques M, Gocho K. Comparison between Two Adaptive Optics Methods for Imaging of Individual Retinal Pigmented Epithelial Cells. Diagnostics (Basel) 2024; 14:768. [PMID: 38611681 PMCID: PMC11012195 DOI: 10.3390/diagnostics14070768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The Retinal Pigment Epithelium (RPE) plays a prominent role in diseases such as age-related macular degeneration, but imaging individual RPE cells is challenging due to their high absorption and low autofluorescence emission. The RPE lies beneath the highly reflective photoreceptor layer (PR) and contains absorptive pigments, preventing direct backscattered light detection when the PR layer is intact. Here, we used near-infrared autofluorescence adaptive optics scanning laser ophthalmoscopy (NIRAF AOSLO) and transscleral flood imaging (TFI) in the same healthy eyes to cross-validate these approaches. Both methods revealed a consistent RPE mosaic pattern and appeared to reflect a distribution of fluorophores consistent with findings from histological studies. Interestingly, even in apparently healthy RPE, we observed dynamic changes over months, suggesting ongoing cellular activity or alterations in fluorophore distribution. These findings emphasize the value of NIRAF AOSLO and TFI in understanding RPE morphology and dynamics.
Collapse
Affiliation(s)
- Elena Gofas-Salas
- Department of Photonics, Institut de la Vision, INSERM, CNRS, Sorbonne Université, 17 rue Moreau, F-75012 Paris, France;
- CIC 1423, CHNO des Quinze-Vingts, INSERM-DGOS 28 rue de Charenton, F-75012 Paris, France; (M.P.); (K.G.)
| | - Daniel M. W. Lee
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; (D.M.W.L.); (E.A.R.)
| | | | - Kate Grieve
- Department of Photonics, Institut de la Vision, INSERM, CNRS, Sorbonne Université, 17 rue Moreau, F-75012 Paris, France;
- CIC 1423, CHNO des Quinze-Vingts, INSERM-DGOS 28 rue de Charenton, F-75012 Paris, France; (M.P.); (K.G.)
| | - Ethan A. Rossi
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; (D.M.W.L.); (E.A.R.)
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Michel Paques
- CIC 1423, CHNO des Quinze-Vingts, INSERM-DGOS 28 rue de Charenton, F-75012 Paris, France; (M.P.); (K.G.)
| | - Kiyoko Gocho
- CIC 1423, CHNO des Quinze-Vingts, INSERM-DGOS 28 rue de Charenton, F-75012 Paris, France; (M.P.); (K.G.)
| |
Collapse
|
5
|
Liu R, Wang X, Hoshi S, Zhang Y. Substrip-based registration and automatic montaging of adaptive optics retinal images. BIOMEDICAL OPTICS EXPRESS 2024; 15:1311-1330. [PMID: 38404341 PMCID: PMC10890855 DOI: 10.1364/boe.514447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/27/2024]
Abstract
Precise registration and montage are critical for high-resolution adaptive optics retinal image analysis but are challenged by rapid eye movement. We present a substrip-based method to improve image registration and facilitate the automatic montaging of adaptive optics scanning laser ophthalmoscopy (AOSLO). The program first batches the consecutive images into groups based on a translation threshold and selects an image with minimal distortion within each group as the reference. Within each group, the software divides each image into multiple strips and calculates the Normalized Cross-Correlation with the reference frame using two substrips at both ends of the whole strip to estimate the strip translation, producing a registered image. Then, the software aligns the registered images of all groups also using a substrip based registration, thereby generating a montage with cell-for-cell precision in the overlapping areas of adjacent frames. The algorithm was evaluated with AOSLO images acquired in human subjects with normal macular health and patients with age-related macular degeneration (AMD). Images with a motion amplitude of up to 448 pixels in the fast scanner direction over a frame of 512 × 512 pixels can be precisely registered. Automatic montage spanning up to 22.6 degrees on the retina was achieved on a cell-to-cell precision with a low misplacement rate of 0.07% (11/16,501 frames) in normal eyes and 0.51% (149/29,051 frames) in eyes with AMD. Substrip based registration significantly improved AOSLO registration accuracy.
Collapse
Affiliation(s)
- Ruixue Liu
- Doheny Eye Institute, Pasadena, CA 91103, USA
| | | | - Sujin Hoshi
- Doheny Eye Institute, Pasadena, CA 91103, USA
- Department of Ophthalmology, University of California - Los Angeles, Los Angeles, CA 90024, USA
- Department of Ophthalmology, University of Tsukuba, Ibaraki, Japan
| | - Yuhua Zhang
- Doheny Eye Institute, Pasadena, CA 91103, USA
- Department of Ophthalmology, University of California - Los Angeles, Los Angeles, CA 90024, USA
| |
Collapse
|
6
|
Moon B, Poletti M, Roorda A, Tiruveedhula P, Liu SH, Linebach G, Rucci M, Rolland JP. Alignment, calibration, and validation of an adaptive optics scanning laser ophthalmoscope for high-resolution human foveal imaging. APPLIED OPTICS 2024; 63:730-742. [PMID: 38294386 PMCID: PMC11062499 DOI: 10.1364/ao.504283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024]
Abstract
In prior art, advances in adaptive optics scanning laser ophthalmoscope (AOSLO) technology have enabled cones in the human fovea to be resolved in healthy eyes with normal vision and low to moderate refractive errors, providing new insight into human foveal anatomy, visual perception, and retinal degenerative diseases. These high-resolution ophthalmoscopes require careful alignment of each optical subsystem to ensure diffraction-limited imaging performance, which is necessary for resolving the smallest foveal cones. This paper presents a systematic and rigorous methodology for building, aligning, calibrating, and testing an AOSLO designed for imaging the cone mosaic of the central fovea in humans with cellular resolution. This methodology uses a two-stage alignment procedure and thorough system testing to achieve diffraction-limited performance. Results from retinal imaging of healthy human subjects under 30 years of age with refractive errors of less than 3.5 diopters using either 680 nm or 840 nm light show that the system can resolve cones at the very center of the fovea, the region where the cones are smallest and most densely packed.
Collapse
Affiliation(s)
- Benjamin Moon
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Martina Poletti
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA
- Department of Neuroscience, University of Rochester, Rochester, NY 14627, USA
| | - Austin Roorda
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, CA 94720, USA
| | - Pavan Tiruveedhula
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, CA 94720, USA
| | - Soh Hang Liu
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Glory Linebach
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Michele Rucci
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA
| | - Jannick P. Rolland
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
7
|
Prahalad KS, Coates DR. Alterations to foveal crowding with microsaccade preparation. Vision Res 2024; 214:108338. [PMID: 37988923 DOI: 10.1016/j.visres.2023.108338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
Visual stimuli presented around the time of a saccade have been shown to be perceived differently by the visual system, including a reduction in the harmful impact of flankers (crowding). However, whether the effects observed are due strictly to crowding remains controversial, and the effects have only been measured with large saccades in peripheral vision. Here we investigate how crowded stimuli placed 20 arc minutes from the center of gaze are affected by an upcoming microsaccade. The stimulus consisted of a rotated T of size 6.25 arcminutes that was either unflanked, surrounded by four flankers (Experiment 1), or surrounded by two flankers that were positioned either radially or tangentially (Experiments 2 and 3). In 80 % of trials, subjects made voluntary microsaccades to the target when cued, and in the remaining 20 % of the trials subjects continued to maintain fixation. In Experiments 1 and 2, subjects were required to saccade to the same location as the target, while in Experiment 3 subjects saccaded to a different location ∼ 20 arc min to the upper left of the target. Thus, we provide evidence for two separable pre-saccadic benefits for crowded parafoveal targets: one isotropizes the crowding zone for stimuli presented 200 to 125 ms before microsaccadic onset, and another provides a benefit exclusively for microsaccade targets surrounded by tangential flankers in the presence of imminent microsaccades. Two possible mechanisms are attentional enhancement and predictive remapping of receptive fields, respectively.
Collapse
Affiliation(s)
- Krishnamachari S Prahalad
- College of Optometry, University of Houston, USA; Brain and Cognitive Sciences, University of Rochester, USA.
| | | |
Collapse
|
8
|
Vienola KV, Lejoyeux R, Gofas-Salas E, Snyder VC, Zhang M, Dansingani KK, Sahel JA, Chhablani J, Rossi EA. Autofluorescent hyperreflective foci on infrared autofluorescence adaptive optics ophthalmoscopy in central serous chorioretinopathy. Am J Ophthalmol Case Rep 2022; 28:101741. [PMID: 36345414 PMCID: PMC9636439 DOI: 10.1016/j.ajoc.2022.101741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/12/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
Purpose To test the hypothesis that hyperreflective foci in central serous chorioretinopathy (CSCR) are autofluorescent and may represent macrophages that have engulfed outer retinal fluorophores from the retinal pigment epithelium (RPE) and photoreceptors. Methods Enrolled subjects underwent spectral domain and swept-source optical coherence tomography, adaptive optics flood-illumination, and adaptive optics scanning laser ophthalmoscopy (AOSLO), including near-infrared autofluorescence (AO-IRAF). For the AO-IRAF imaging, retinal fluorophores were excited using 795 nm light and collected in an emission band from 814 to 850 nm. Results In 2 of 3 eyes, a hyperautofluorescent signal was detected with an elliptical shape and punctate, granular aspects surrounded by a hypoautofluorescent halo. The size of these structures in the active case was measured to be 17 ± 4 μm in diameter, with at least 45 individual hyperautofluorescent foci identified from the AO-IRAF montage in the active stage of patient 2. In the asymptomatic case there were fewer structures visible (∼10) and their size was smaller (11 ± 4 μm). These hyper-AF foci were colocalized with hyperreflective foci on OCT and visible in simultaneously acquired confocal AOSLO images in active stage. The hyperautofluorescent foci in the patient with active CSCR disappeared coincident with clinical resolution. Conclusion and importance We show here the first AO-IRAF images from patients with CSCR, demonstrating hyper-autofluorescent punctate foci, colocalized with hyper-reflective foci on confocal AOSLO images and in OCT. The autofluorescence of these foci may be driven by the accumulation of photoreceptor and RPE fluorophores within macrophages during the active stage of the disease.
Collapse
Affiliation(s)
- Kari V. Vienola
- University of Pittsburgh, Department of Ophthalmology, School of Medicine, 4200 Fifth Ave, Pittsburgh, PA, USA
- Corresponding author. Laboratory of Biophysics, Institute of Biomedicine University of Turku Tykistönkatu 6A, Turku, Finland.
| | - Raphael Lejoyeux
- University of Pittsburgh, Department of Ophthalmology, School of Medicine, 4200 Fifth Ave, Pittsburgh, PA, USA
- Rothschild Foundation Hospital, 29 rue Manin, Paris, France
| | - Elena Gofas-Salas
- University of Pittsburgh, Department of Ophthalmology, School of Medicine, 4200 Fifth Ave, Pittsburgh, PA, USA
| | - Valerie C. Snyder
- University of Pittsburgh, Department of Ophthalmology, School of Medicine, 4200 Fifth Ave, Pittsburgh, PA, USA
| | - Min Zhang
- University of Pittsburgh, Department of Ophthalmology, School of Medicine, 4200 Fifth Ave, Pittsburgh, PA, USA
| | - Kunal K. Dansingani
- University of Pittsburgh, Department of Ophthalmology, School of Medicine, 4200 Fifth Ave, Pittsburgh, PA, USA
| | - José-Alain Sahel
- University of Pittsburgh, Department of Ophthalmology, School of Medicine, 4200 Fifth Ave, Pittsburgh, PA, USA
| | - Jay Chhablani
- University of Pittsburgh, Department of Ophthalmology, School of Medicine, 4200 Fifth Ave, Pittsburgh, PA, USA
| | - Ethan A. Rossi
- University of Pittsburgh, Department of Ophthalmology, School of Medicine, 4200 Fifth Ave, Pittsburgh, PA, USA
- University of Pittsburgh, Department of Bioengineering, Swanson School of Engineering, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Vienola KV, Zhang M, Snyder VC, Dansingani KK, Sahel JA, Rossi EA. Near infrared autofluorescence imaging of retinal pigmented epithelial cells using 663 nm excitation. Eye (Lond) 2022; 36:1878-1883. [PMID: 34462582 PMCID: PMC9499940 DOI: 10.1038/s41433-021-01754-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 08/03/2021] [Accepted: 08/18/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Fundus autofluorescence (AF) using adaptive optics scanning laser ophthalmoscopy (AOSLO) enables morphometric analysis of individual retinal pigmented epithelial (RPE) cells. However, only a few excitation wavelengths in the visible and near-infrared have been evaluated. Visible light excitation (<600 nm) presents additional safety hazards and is uncomfortable for patients. Near-infrared excitation (>700 nm) overcomes those problems but introduces others, including decreased AF signal and cone signatures that obscure RPE structure. Here we investigated the use of an intermediate wavelength, 663 nm, for excitation and compared it to 795 nm. METHODS Subjects were imaged using AOSLO equipped with a detection channel to collect AF emission between 814 and 850 nm. Two light sources (663 and 795 nm) were used to excite the retinal fluorophores. We recorded 90 s videos and registered them with custom software to integrate AF images for analysis. RESULTS We imaged healthy eyes and an eye with pattern dystrophy. Similar AF microstructures were detected with each excitation source, despite ~4 times lower excitation power with 663 nm. The signal-to-noise values showed no meaningful difference between 663 nm and 795 nm excitation and a similar trend was observed for image contrast between the two excitation wavelengths. CONCLUSIONS Lower light levels can be used with shorter wavelength excitation to achieve comparable images of the microstructure of the RPE as have been obtained using higher light levels at longer wavelengths. Further experiments are needed to fully characterize AF across spectrum and determine the optimal excitation and emission bandwidths that balance efficiency, patient comfort, and efficacy.
Collapse
Affiliation(s)
- Kari V Vienola
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Ophthalmology and Vision Science, University of California Davis, Sacramento, CA, USA.
| | - Min Zhang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Valerie C Snyder
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kunal K Dansingani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ethan A Rossi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Prahalad KS, Coates DR. Microsaccadic correlates of covert attention and crowding. J Vis 2022; 22:15. [PMID: 36121661 PMCID: PMC9503213 DOI: 10.1167/jov.22.10.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Spatial crowding occurs when an object is cluttered among other objects in space and is a ubiquitous factor affecting object recognition in the peripheral visual field. Crowding is typically tested by presenting crowded stimuli at an eccentric location while having observers fixate at a point in space. However, even during fixation, our eyes are not perfectly steady but instead make small-scale eye movements (microsaccades) that have recently been suggested to be affected by shifts in attentional allocation. In the current study, we monitored microsaccadic behavior (a possible attentional correlate) to understand naturally occurring shifts in attention that occur following the presentation of a crowded stimulus. A tracking scanning laser ophthalmoscope (TSLO) was used to image the right eye of each observer during a psychophysical task. The stimuli consisted of Sloan numbers (0-9) presented briefly, either unflanked or surrounded by Sloan numbers at one of four nominal spacings. The extent of crowding was found to decrease by 26% on trials with the presence of incongruent microsaccades (proposed to suggest attentional capture). These findings complement the existing body of literature on the beneficial impact of explicit shifts of spatial attention to the location of a crowded stimulus.
Collapse
Affiliation(s)
| | - Daniel R Coates
- College of Optometry, University of Houston, Houston, TX, USA.,
| |
Collapse
|
11
|
Hu X, Yang Q. Real-time correction of image rotation with adaptive optics scanning light ophthalmoscopy. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2022; 39:1663-1672. [PMID: 36215635 DOI: 10.1364/josaa.465889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
Fixational eye motion includes typical translation and torsion. In the registration of images from adaptive optics scanning light ophthalmoscopy (AOSLO), image rotation due to eye torsion and/or head rotation is often ignored because (a) the amount of rotation is trivial compared to translation within a short duration of imaging or recording time and (b) computational cost increases substantially when the registration algorithm involves simultaneous detection of rotation and translation. However, it becomes critically important under cases such as long exposure, functional measurements, and precise motion tracking. We developed a fast method to detect and correct rotation from AOSLO images, together with the detection of strip-level motion translation. The computational cost for rotation detection and correction alone is about 5 ms/frame (512×512 pixels) on an nVidia GTX960M GPU. Image quality is compared with and without rotation correction from 10 healthy human subjects and 8 diseased eyes with a total of 180 videos. The results show that residual image motions between the reference images and the registered images with rotation correction are a fraction of those without rotation correction, and the ratio is 0.74-0.89 at the image center and 0.37-0.51 at the four corners of the images.
Collapse
|
12
|
Cai Y, Grieve K, Mecê P. Characterization and Analysis of Retinal Axial Motion at High Spatiotemporal Resolution and Its Implication for Real-Time Correction in Human Retinal Imaging. Front Med (Lausanne) 2022; 9:868217. [PMID: 35903318 PMCID: PMC9320321 DOI: 10.3389/fmed.2022.868217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
High-resolution ophthalmic imaging devices including spectral-domain and full-field optical coherence tomography (SDOCT and FFOCT) are adversely affected by the presence of continuous involuntary retinal axial motion. Here, we thoroughly quantify and characterize retinal axial motion with both high temporal resolution (200,000 A-scans/s) and high axial resolution (4.5 μm), recorded over a typical data acquisition duration of 3 s with an SDOCT device over 14 subjects. We demonstrate that although breath-holding can help decrease large-and-slow drifts, it increases small-and-fast fluctuations, which is not ideal when motion compensation is desired. Finally, by simulating the action of an axial motion stabilization control loop, we show that a loop rate of 1.2 kHz is ideal to achieve 100% robust clinical in-vivo retinal imaging.
Collapse
Affiliation(s)
- Yao Cai
- Institut Langevin, ESPCI Paris, CNRS, PSL University, Paris, France
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Kate Grieve
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France
| | - Pedro Mecê
- Institut Langevin, ESPCI Paris, CNRS, PSL University, Paris, France
- DOTA, ONERA, Université Paris Saclay, Palaiseau, France
- *Correspondence: Pedro Mecê
| |
Collapse
|
13
|
Gofas-Salas E, Rui Y, Mecê P, Zhang M, Snyder VC, Vienola KV, Lee DMW, Sahel JA, Grieve K, Rossi EA. Design of a radial multi-offset detection pattern for in vivo phase contrast imaging of the inner retina in humans. BIOMEDICAL OPTICS EXPRESS 2022; 13:117-132. [PMID: 35154858 PMCID: PMC8803027 DOI: 10.1364/boe.441808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/15/2021] [Accepted: 11/21/2021] [Indexed: 05/06/2023]
Abstract
Previous work has shown that multi-offset detection in adaptive optics scanning laser ophthalmoscopy (AOSLO) can be used to image transparent cells such as retinal ganglion cells (RGCs) in monkeys and humans. Though imaging in anesthetized monkeys with high light levels produced high contrast images of RGCs, images from humans failed to reach the same contrast due to several drawbacks in the previous dual-wavelength multi-offset approach. Our aim here was to design and build a multi-offset detection pattern for humans at safe light levels that could reveal transparent cells in the retinal ganglion cell layer with a contrast and acquisition time approaching results only previously obtained in monkeys. Here, we present a new single-wavelength solution that allows for increased light power and eliminates problematic chromatic aberrations. Then, we demonstrate that a radial multi-offset detection pattern with an offset distance of 8-10 Airy Disk Diameter (ADD) is optimal to detect photons multiply scattered in all directions from weakly reflective retinal cells thereby enhancing their contrast. This new setup and image processing pipeline led to improved imaging of inner retinal cells, including the first images of microglia with multi-offset imaging in AOSLO.
Collapse
Affiliation(s)
- Elena Gofas-Salas
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh 15106, USA
- Denotes that each of these authors contributed equally to this work
| | - Yuhua Rui
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh 15106, USA
- Eye center of Xiangya Hospital, Central South University, Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 401302, China
- Denotes that each of these authors contributed equally to this work
| | - Pedro Mecê
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh 15106, USA
| | - Min Zhang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh 15106, USA
| | - Valerie C. Snyder
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh 15106, USA
| | - Kari V. Vienola
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh 15106, USA
| | - Daniel M. W. Lee
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh 15106, USA
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh 15106, USA
| | | | - Ethan A. Rossi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh 15106, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh 15106, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh 15106, USA
| |
Collapse
|
14
|
Vienola KV, Dansingani KK, Eller AW, Martel JN, Snyder VC, Rossi EA. Multimodal Imaging of Torpedo Maculopathy With Fluorescence Adaptive Optics Imaging of Individual Retinal Pigmented Epithelial Cells. Front Med (Lausanne) 2021; 8:769308. [PMID: 34957148 PMCID: PMC8698897 DOI: 10.3389/fmed.2021.769308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/08/2021] [Indexed: 12/03/2022] Open
Abstract
Torpedo maculopathy (TM) is a rare congenital defect of the retinal pigment epithelium (RPE). The RPE is often evaluated clinically using fundus autofluorescence (AF), a technique that visualizes RPE structure at the tissue level from the intrinsic AF of RPE fluorophores. TM lesions typically emit little or no AF, but this macroscopic assessment is unable to resolve the RPE cells, leaving the organization of the RPE cell mosaic in TM unknown. We used fluorescence adaptive optics scanning laser ophthalmoscopy (AOSLO) to show here for the first time the microscopic cellular-level structural alterations to the RPE cell mosaic in TM that underlie the tissue-level changes seen in conventional clinical imaging. We evaluated two patients with TM using conventional clinical imaging techniques and adaptive optics (AO) infrared autofluorescence (IRAF) in AOSLO. Confocal AOSLO revealed relatively normal cones outside the TM lesion but altered cone appearance within it and along its margins in both patients. We quantified cone topography and RPE cell morphometry from the fovea to the margin of the lesion in case 1 and found cone density to be within the normal range across the locations imaged. However, RPE morphometric analysis revealed disrupted RPE cells outside the margin of the lesion; the mean RPE cell area was greater than two standard deviations above the normative range up to approximately 1.5 mm from the lesion margin. Similar morphometric changes were seen to individual RPE cells in case 2. Multi-modal imaging with AOSLO reveals that RPE cells are abnormal in TM well beyond the margins of the characteristic TM lesion boundary defined with conventional clinical imaging. Since the TM fovea appears to be fully formed, with normal cone packing, it is possible that the congenital RPE defect in TM occurs relatively late in retinal development. This work demonstrates how cellular level imaging of the RPE can provide new insight into RPE pathologies, particularly for rare conditions such as TM.
Collapse
Affiliation(s)
- Kari V Vienola
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kunal K Dansingani
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew W Eller
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joseph N Martel
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Valerie C Snyder
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ethan A Rossi
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
15
|
Leonard BT, Kontos AP, Marchetti GF, Zhang M, Eagle SR, Reecher HM, Bensinger ES, Snyder VC, Holland CL, Sheehy CK, Rossi EA. Fixational eye movements following concussion. J Vis 2021; 21:11. [PMID: 34940825 PMCID: PMC8709928 DOI: 10.1167/jov.21.13.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to evaluate fixational eye movements (FEMs) with high spatial and temporal resolution following concussion, where oculomotor symptoms and impairments are common. Concussion diagnosis was determined using current consensus guidelines. A retinal eye-tracking device, the tracking scanning laser ophthalmoscope (TSLO), was used to measure FEMs in adolescents and young adults following a concussion and in an unaffected control population. FEMs were quantified in two fixational paradigms: (1) when fixating on the center, or (2) when fixating on the corner of the TSLO imaging raster. Fixational saccade amplitude in recent concussion patients (≤ 21 days) was significantly greater, on average, in the concussion group (mean = 1.03°; SD = 0.36°) compared with the controls (mean = 0.82°; SD = 0.31°), when fixating on the center of the imaging raster (t = 2.87, df = 82, p = 0.005). These fixational saccades followed the main sequence and therefore also had greater peak velocity (t = 2.86, df = 82, p = 0.006) and peak acceleration (t = 2.80, df = 82, p = 0.006). These metrics significantly differentiated concussed from controls (AUC = 0.67-0.68, minimum p = 0.005). No group differences were seen for the drift metrics in either task or for any of the FEMs metrics in the corner-of-raster fixation task. Fixational saccade amplitudes were significantly different in the concussion group, but only when fixating on the center of the raster. This task specificity suggests that task optimization may improve differentiation and warrants further study. FEMs measured in the acute-to-subacute period of concussion recovery may provide a quick (<3 minutes), objective, sensitive, and accurate ocular dysfunction assessment. Future work should assess the impact of age, mechanism of injury, and post-concussion recovery on FEM alterations following concussion.
Collapse
Affiliation(s)
- Bianca T Leonard
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,
| | - Anthony P Kontos
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,
| | | | - Min Zhang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,
| | - Shawn R Eagle
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,
| | - Hope M Reecher
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,
| | - Ethan S Bensinger
- Vision Science Group, University of California, Berkeley, Berkeley, CA, USA.,
| | - Valerie C Snyder
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,
| | - Cyndi L Holland
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,
| | - Christy K Sheehy
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.,
| | - Ethan A Rossi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA., rossilab.org
| |
Collapse
|
16
|
Young LK, Smithson HE. Emulated retinal image capture (ERICA) to test, train and validate processing of retinal images. Sci Rep 2021; 11:11225. [PMID: 34045507 PMCID: PMC8160341 DOI: 10.1038/s41598-021-90389-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
High resolution retinal imaging systems, such as adaptive optics scanning laser ophthalmoscopes (AOSLO), are increasingly being used for clinical research and fundamental studies in neuroscience. These systems offer unprecedented spatial and temporal resolution of retinal structures in vivo. However, a major challenge is the development of robust and automated methods for processing and analysing these images. We present ERICA (Emulated Retinal Image CApture), a simulation tool that generates realistic synthetic images of the human cone mosaic, mimicking images that would be captured by an AOSLO, with specified image quality and with corresponding ground-truth data. The simulation includes a self-organising mosaic of photoreceptors, the eye movements an observer might make during image capture, and data capture through a real system incorporating diffraction, residual optical aberrations and noise. The retinal photoreceptor mosaics generated by ERICA have a similar packing geometry to human retina, as determined by expert labelling of AOSLO images of real eyes. In the current implementation ERICA outputs convincingly realistic en face images of the cone photoreceptor mosaic but extensions to other imaging modalities and structures are also discussed. These images and associated ground-truth data can be used to develop, test and validate image processing and analysis algorithms or to train and validate machine learning approaches. The use of synthetic images has the advantage that neither access to an imaging system, nor to human participants is necessary for development.
Collapse
Affiliation(s)
- Laura K Young
- Biosciences Institute, Newcastle University, Newcastle, NE2 4HH, UK.
| | - Hannah E Smithson
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| |
Collapse
|
17
|
Mecê P, Gofas-Salas E, Rui Y, Zhang M, Sahel JA, Rossi EA. Spatial-frequency-based image reconstruction to improve image contrast in multi-offset adaptive optics ophthalmoscopy. OPTICS LETTERS 2021; 46:1085-1088. [PMID: 33649663 PMCID: PMC9202470 DOI: 10.1364/ol.417903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/21/2021] [Indexed: 05/08/2023]
Abstract
Off-axis detection methods in adaptive optics (AO) ophthalmoscopy can enhance image contrast of translucent retinal structures such as cone inner segments and retinal ganglion cells. Here, we propose a 2D optical model showing that the phase contrast produced by these methods depends on the offset orientation. While one axis provides an asymmetric light distribution, hence high phase contrast, the perpendicular axis provides a symmetric one, thus substantially lower contrast. We support this model with in vivo human data acquired with a multi-offset AO scanning light ophthalmoscope. Then, using this finding, we provide a post-processing method, named spatial-frequency-based image reconstruction, to optimally combine images from different off-axis detector orientations, significantly increasing the structural cellular contrast of in vivo human retinal neurons such as cone inner segment, putative rods, and retinal ganglion cells.
Collapse
Affiliation(s)
- Pedro Mecê
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Elena Gofas-Salas
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yuhua Rui
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Eye center of Xiangya Hospital, Central South Univeristy; Hunan Key Laboratory of Ophthalmology; Changsha, Hunan, China
| | - Min Zhang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ethan A. Rossi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|