1
|
Wang FF, Li N, Wang JJ, Muyesai N, Fu H. An Investigation into the Characteristics and Distribution Patterns of Diseases Detected via Gastroscopy in Northern Xinjiang, China. J Multidiscip Healthc 2024; 17:229-235. [PMID: 38250315 PMCID: PMC10799621 DOI: 10.2147/jmdh.s434846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Objective The aim of this study is to examine the distribution and features of gastroscopy in northern Xinjiang, a province in China. Methods We included a group of 895 patients diagnosed with digestive diseases at Urumqi Friendship Hospital and analyzed their gastroscopic results and baseline data. Results Among patients aged 12 to 86 years in the specified region, females exhibited a heightened susceptibility to esophageal-gastrointestinal and intestinal disorders compared to males. The mean age for chronic gastritis onset was determined to be 54.79 years. In the context of esophageal-gastric-intestinal disorders, the distribution across various ethnic groups manifested as follows: the Han, Uygur, Hui, and Kazakh populations comprised 53.97%, 23.91%, 7.15%, and 3.46%, respectively. Through principal component-based dimension reduction analysis, we identified chronic non-atrophic gastritis with erosive gastritis, duodenal bulb inflammation, and chronic non-atrophic gastritis (predominantly in the gastric antrum) as pivotal factors contributing to differences in hiatal hernia. Multiple linear regression models were established for different ethnic groups, duodenal bulb inflammation, and hiatal hernia by age. The results revealed a heightened risk of duodenal bulb inflammation (P < 0.01) in Han, Kazakh, Hui, Mongolian, and Uygur women, while the risk of hiatal hernia exhibited a positive correlation with age (P = 0.001). Conclusion Among patients undergoing gastrointestinal examinations in northern Xinjiang, the most prevalent pathological condition was identified as chronic gastritis. Notably, within this subgroup, the prevalence of duodenal bulb inflammation was found to be greater in women than in men. The ethnic composition within this context encompassed patients from the Han, Kazakh, Hui, and Mongolian ethnic groups. Furthermore, a positive correlation was identified between the incidence of esophageal hiatal hernia and age.
Collapse
Affiliation(s)
- Fei-Fei Wang
- The People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Emergency Care Center, Urumqi, Xinjiang Uygur Autonomous Region, 830000, People’s Republic of China
| | - Nan Li
- The People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Emergency Care Center, Urumqi, Xinjiang Uygur Autonomous Region, 830000, People’s Republic of China
| | - Jing-Jing Wang
- The People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Emergency Care Center, Urumqi, Xinjiang Uygur Autonomous Region, 830000, People’s Republic of China
| | - Nijiti Muyesai
- The People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Emergency Care Center, Urumqi, Xinjiang Uygur Autonomous Region, 830000, People’s Republic of China
| | - Haiyan Fu
- Department of Gastroenterology, Urumqi Friendship Hospital, Urumqi, Xinjiang Uygur Autonomous Region, 830000, People’s Republic of China
| |
Collapse
|
2
|
Chempak Kumar A, Mubarak DMN. Ensembled CNN with artificial bee colony optimization method for esophageal cancer stage classification using SVM classifier. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2024; 32:31-51. [PMID: 37980593 DOI: 10.3233/xst-230111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
BACKGROUND Esophageal cancer (EC) is aggressive cancer with a high fatality rate and a rapid rise of the incidence globally. However, early diagnosis of EC remains a challenging task for clinicians. OBJECTIVE To help address and overcome this challenge, this study aims to develop and test a new computer-aided diagnosis (CAD) network that combines several machine learning models and optimization methods to detect EC and classify cancer stages. METHODS The study develops a new deep learning network for the classification of the various stages of EC and the premalignant stage, Barrett's Esophagus from endoscopic images. The proposed model uses a multi-convolution neural network (CNN) model combined with Xception, Mobilenetv2, GoogLeNet, and Darknet53 for feature extraction. The extracted features are blended and are then applied on to wrapper based Artificial Bee Colony (ABC) optimization technique to grade the most accurate and relevant attributes. A multi-class support vector machine (SVM) classifies the selected feature set into the various stages. A study dataset involving 523 Barrett's Esophagus images, 217 ESCC images and 288 EAC images is used to train the proposed network and test its classification performance. RESULTS The proposed network combining Xception, mobilenetv2, GoogLeNet, and Darknet53 outperforms all the existing methods with an overall classification accuracy of 97.76% using a 3-fold cross-validation method. CONCLUSION This study demonstrates that a new deep learning network that combines a multi-CNN model with ABC and a multi-SVM is more efficient than those with individual pre-trained networks for the EC analysis and stage classification.
Collapse
Affiliation(s)
- A Chempak Kumar
- Department of Computer Science, University of Kerala, Trivandrum, Kerala, India
| | | |
Collapse
|
3
|
Wu S, Zhang R, Yan J, Li C, Liu Q, Wang L, Wang H. High-Speed and Accurate Diagnosis of Gastrointestinal Disease: Learning on Endoscopy Images Using Lightweight Transformer with Local Feature Attention. Bioengineering (Basel) 2023; 10:1416. [PMID: 38136007 PMCID: PMC10741161 DOI: 10.3390/bioengineering10121416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
In response to the pressing need for robust disease diagnosis from gastrointestinal tract (GIT) endoscopic images, we proposed FLATer, a fast, lightweight, and highly accurate transformer-based model. FLATer consists of a residual block, a vision transformer module, and a spatial attention block, which concurrently focuses on local features and global attention. It can leverage the capabilities of both convolutional neural networks (CNNs) and vision transformers (ViT). We decomposed the classification of endoscopic images into two subtasks: a binary classification to discern between normal and pathological images and a further multi-class classification to categorize images into specific diseases, namely ulcerative colitis, polyps, and esophagitis. FLATer has exhibited exceptional prowess in these tasks, achieving 96.4% accuracy in binary classification and 99.7% accuracy in ternary classification, surpassing most existing models. Notably, FLATer could maintain impressive performance when trained from scratch, underscoring its robustness. In addition to the high precision, FLATer boasted remarkable efficiency, reaching a notable throughput of 16.4k images per second, which positions FLATer as a compelling candidate for rapid disease identification in clinical practice.
Collapse
Affiliation(s)
- Shibin Wu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (S.W.); (R.Z.); (J.Y.)
| | - Ruxin Zhang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (S.W.); (R.Z.); (J.Y.)
| | - Jiayi Yan
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (S.W.); (R.Z.); (J.Y.)
| | - Chengquan Li
- School of Clinical Medicine, Tsinghua University, Beijing 100084, China;
| | - Qicai Liu
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China;
| | - Liyang Wang
- School of Clinical Medicine, Tsinghua University, Beijing 100084, China;
| | - Haoqian Wang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (S.W.); (R.Z.); (J.Y.)
| |
Collapse
|
4
|
Zhang JQ, Mi JJ, Wang R. Application of convolutional neural network-based endoscopic imaging in esophageal cancer or high-grade dysplasia: A systematic review and meta-analysis. World J Gastrointest Oncol 2023; 15:1998-2016. [DOI: 10.4251/wjgo.v15.i11.1998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/05/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Esophageal cancer is the seventh-most common cancer type worldwide, accounting for 5% of death from malignancy. Development of novel diagnostic techniques has facilitated screening, early detection, and improved prognosis. Convolutional neural network (CNN)-based image analysis promises great potential for diagnosing and determining the prognosis of esophageal cancer, enabling even early detection of dysplasia.
AIM To conduct a meta-analysis of the diagnostic accuracy of CNN models for the diagnosis of esophageal cancer and high-grade dysplasia (HGD).
METHODS PubMed, EMBASE, Web of Science and Cochrane Library databases were searched for articles published up to November 30, 2022. We evaluated the diagnostic accuracy of using the CNN model with still image-based analysis and with video-based analysis for esophageal cancer or HGD, as well as for the invasion depth of esophageal cancer. The pooled sensitivity, pooled specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR) and area under the curve (AUC) were estimated, together with the 95% confidence intervals (CI). A bivariate method and hierarchical summary receiver operating characteristic method were used to calculate the diagnostic test accuracy of the CNN model. Meta-regression and subgroup analyses were used to identify sources of heterogeneity.
RESULTS A total of 28 studies were included in this systematic review and meta-analysis. Using still image-based analysis for the diagnosis of esophageal cancer or HGD provided a pooled sensitivity of 0.95 (95%CI: 0.92-0.97), pooled specificity of 0.92 (0.89-0.94), PLR of 11.5 (8.3-16.0), NLR of 0.06 (0.04-0.09), DOR of 205 (115-365), and AUC of 0.98 (0.96-0.99). When video-based analysis was used, a pooled sensitivity of 0.85 (0.77-0.91), pooled specificity of 0.73 (0.59-0.83), PLR of 3.1 (1.9-5.0), NLR of 0.20 (0.12-0.34), DOR of 15 (6-38) and AUC of 0.87 (0.84-0.90) were found. Prediction of invasion depth resulted in a pooled sensitivity of 0.90 (0.87-0.92), pooled specificity of 0.83 (95%CI: 0.76-0.88), PLR of 7.8 (1.9-32.0), NLR of 0.10 (0.41-0.25), DOR of 118 (11-1305), and AUC of 0.95 (0.92-0.96).
CONCLUSION CNN-based image analysis in diagnosing esophageal cancer and HGD is an excellent diagnostic method with high sensitivity and specificity that merits further investigation in large, multicenter clinical trials.
Collapse
Affiliation(s)
- Jun-Qi Zhang
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jun-Jie Mi
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, Taiyuan 030012, Shanxi Province, China
| | - Rong Wang
- Department of Gastroenterology, The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan 030012, Shanxi Province, China
| |
Collapse
|
5
|
Wang L, Yang Y, Yang A, Li T. Lightweight deep learning model incorporating an attention mechanism and feature fusion for automatic classification of gastric lesions in gastroscopic images. BIOMEDICAL OPTICS EXPRESS 2023; 14:4677-4695. [PMID: 37791283 PMCID: PMC10545198 DOI: 10.1364/boe.487456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/11/2023] [Accepted: 06/29/2023] [Indexed: 10/05/2023]
Abstract
Accurate diagnosis of various lesions in the formation stage of gastric cancer is an important problem for doctors. Automatic diagnosis tools based on deep learning can help doctors improve the accuracy of gastric lesion diagnosis. Most of the existing deep learning-based methods have been used to detect a limited number of lesions in the formation stage of gastric cancer, and the classification accuracy needs to be improved. To this end, this study proposed an attention mechanism feature fusion deep learning model with only 14 million (M) parameters. Based on that model, the automatic classification of a wide range of lesions covering the stage of gastric cancer formation was investigated, including non-neoplasm(including gastritis and intestinal metaplasia), low-grade intraepithelial neoplasia, and early gastric cancer (including high-grade intraepithelial neoplasia and early gastric cancer). 4455 magnification endoscopy with narrow-band imaging(ME-NBI) images from 1188 patients were collected to train and test the proposed method. The results of the test dataset showed that compared with the advanced gastric lesions classification method with the best performance (overall accuracy = 94.3%, parameters = 23.9 M), the proposed method achieved both higher overall accuracy and a relatively lightweight model (overall accuracy =95.6%, parameter = 14 M). The accuracy, sensitivity, and specificity of low-grade intraepithelial neoplasia were 94.5%, 93.0%, and 96.5%, respectively, achieving state-of-the-art classification performance. In conclusion, our method has demonstrated its potential in diagnosing various lesions at the stage of gastric cancer formation.
Collapse
Affiliation(s)
- Lingxiao Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yingyun Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Aiming Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Ting Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
6
|
Hosseini F, Asadi F, Emami H, Ebnali M. Machine learning applications for early detection of esophageal cancer: a systematic review. BMC Med Inform Decis Mak 2023; 23:124. [PMID: 37460991 DOI: 10.1186/s12911-023-02235-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023] Open
Abstract
INTRODUCTION Esophageal cancer (EC) is a significant global health problem, with an estimated 7th highest incidence and 6th highest mortality rate. Timely diagnosis and treatment are critical for improving patients' outcomes, as over 40% of patients with EC are diagnosed after metastasis. Recent advances in machine learning (ML) techniques, particularly in computer vision, have demonstrated promising applications in medical image processing, assisting clinicians in making more accurate and faster diagnostic decisions. Given the significance of early detection of EC, this systematic review aims to summarize and discuss the current state of research on ML-based methods for the early detection of EC. METHODS We conducted a comprehensive systematic search of five databases (PubMed, Scopus, Web of Science, Wiley, and IEEE) using search terms such as "ML", "Deep Learning (DL (", "Neural Networks (NN)", "Esophagus", "EC" and "Early Detection". After applying inclusion and exclusion criteria, 31 articles were retained for full review. RESULTS The results of this review highlight the potential of ML-based methods in the early detection of EC. The average accuracy of the reviewed methods in the analysis of endoscopic and computed tomography (CT (images of the esophagus was over 89%, indicating a high impact on early detection of EC. Additionally, the highest percentage of clinical images used in the early detection of EC with the use of ML was related to white light imaging (WLI) images. Among all ML techniques, methods based on convolutional neural networks (CNN) achieved higher accuracy and sensitivity in the early detection of EC compared to other methods. CONCLUSION Our findings suggest that ML methods may improve accuracy in the early detection of EC, potentially supporting radiologists, endoscopists, and pathologists in diagnosis and treatment planning. However, the current literature is limited, and more studies are needed to investigate the clinical applications of these methods in early detection of EC. Furthermore, many studies suffer from class imbalance and biases, highlighting the need for validation of detection algorithms across organizations in longitudinal studies.
Collapse
Affiliation(s)
- Farhang Hosseini
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Asadi
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hassan Emami
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Ebnali
- Department of Emergency Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Shimizu T, Sasaki Y, Ito K, Matsuzaka M, Sakuraba H, Fukuda S. A trial deep learning-based model for four-class histologic classification of colonic tumor from narrow band imaging. Sci Rep 2023; 13:7510. [PMID: 37161081 PMCID: PMC10169849 DOI: 10.1038/s41598-023-34750-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/06/2023] [Indexed: 05/11/2023] Open
Abstract
Narrow band imaging (NBI) has been extensively utilized as a diagnostic tool for colorectal neoplastic lesions. This study aimed to develop a trial deep learning (DL) based four-class classification model for low-grade dysplasia (LGD); high-grade dysplasia or mucosal carcinoma (HGD); superficially invasive submucosal carcinoma (SMs) and deeply invasive submucosal carcinomas (SMd) and evaluate its potential as a diagnostic tool. We collected a total of 1,390 NBI images as the dataset, including 53 LGD, 120 HGD, 20 SMs and 17 SMd. A total of 598,801 patches were trimmed from the lesion and background. A patch-based classification model was built by employing a residual convolutional neural network (CNN) and validated by three-fold cross-validation. The patch-based validation accuracy was 0.876, 0.957, 0.907 and 0.929 in LGD, HGD, SMs and SMd, respectively. The image-level classification algorithm was derived from the patch-based mapping across the entire image domain, attaining accuracies of 0.983, 0.990, 0.964, and 0.992 in LGD, HGD, SMs, and SMd, respectively. Our CNN-based model demonstrated high performance for categorizing the histological grade of dysplasia as well as the depth of invasion in routine colonoscopy, suggesting a potential diagnostic tool with minimal human inputs.
Collapse
Affiliation(s)
- Takeshi Shimizu
- Department of Gastroenterology, Sendai City Medical Center Sendai Open Hospital, 5-22-1 Tsurugaya, Miyagino-ku, Sendai, 983-0824, Japan
| | - Yoshihiro Sasaki
- Department of Medical Informatics, Hirosaki University Hospital, 53 Hon-cho, Hirosaki, 036-8563, Japan.
| | - Kei Ito
- Department of Gastroenterology, Sendai City Medical Center Sendai Open Hospital, 5-22-1 Tsurugaya, Miyagino-ku, Sendai, 983-0824, Japan
| | - Masashi Matsuzaka
- Department of Medical Informatics, Hirosaki University Hospital, 53 Hon-cho, Hirosaki, 036-8563, Japan
| | - Hirotake Sakuraba
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Shinsaku Fukuda
- Department of Community Medical Support, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| |
Collapse
|
8
|
Tang S, Yu X, Cheang CF, Ji X, Yu HH, Choi IC. CLELNet: A continual learning network for esophageal lesion analysis on endoscopic images. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 231:107399. [PMID: 36780717 DOI: 10.1016/j.cmpb.2023.107399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/03/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVE A deep learning-based intelligent diagnosis system can significantly reduce the burden of endoscopists in the daily analysis of esophageal lesions. Considering the need to add new tasks in the diagnosis system, a deep learning model that can train a series of tasks incrementally using endoscopic images is essential for identifying the types and regions of esophageal lesions. METHOD In this paper, we proposed a continual learning-based esophageal lesion network (CLELNet), in which a convolutional autoencoder was designed to extract representation features of endoscopic images among different esophageal lesions. The proposed CLELNet consists of shared layers and task-specific layers. Shared layers are used to extract common features among different lesions while task-specific layers can complete different tasks. The first two tasks trained by the CLELNet are the classification (task 1) and the segmentation (task 2). We collected a dataset of esophageal endoscopic images from Macau Kiang Wu Hospital for training and testing the CLELNet. RESULTS The experimental results showed that the classification accuracy of task 1 was 95.96%, and the Intersection Over Union and the Dice Similarity Coefficient of task 2 were 65.66% and 78.08%, respectively. CONCLUSIONS The proposed CLELNet can realize task-incremental learning without forgetting the previous tasks and thus become a useful computer-aided diagnosis system in esophageal lesions analysis.
Collapse
Affiliation(s)
- Suigu Tang
- Faculty of Innovation Engineering-School of Computer Science and Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR
| | - Xiaoyuan Yu
- Faculty of Innovation Engineering-School of Computer Science and Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR
| | - Chak Fong Cheang
- Faculty of Innovation Engineering-School of Computer Science and Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR.
| | - Xiaoyu Ji
- Faculty of Innovation Engineering-School of Computer Science and Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR
| | - Hon Ho Yu
- Kiang Wu Hospital, Rua de Coelho do Amaral, Macau SAR
| | - I Cheong Choi
- Kiang Wu Hospital, Rua de Coelho do Amaral, Macau SAR
| |
Collapse
|
9
|
Tang S, Yu X, Cheang CF, Liang Y, Zhao P, Yu HH, Choi IC. Transformer-based multi-task learning for classification and segmentation of gastrointestinal tract endoscopic images. Comput Biol Med 2023; 157:106723. [PMID: 36907035 DOI: 10.1016/j.compbiomed.2023.106723] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/04/2023] [Accepted: 02/26/2023] [Indexed: 03/07/2023]
Abstract
Despite being widely utilized to help endoscopists identify gastrointestinal (GI) tract diseases using classification and segmentation, models based on convolutional neural network (CNN) have difficulties in distinguishing the similarities among some ambiguous types of lesions presented in endoscopic images, and in the training when lacking labeled datasets. Those will prevent CNN from further improving the accuracy of diagnosis. To address these challenges, we first proposed a Multi-task Network (TransMT-Net) capable of simultaneously learning two tasks (classification and segmentation), which has the transformer designed to learn global features and can combine the advantages of CNN in learning local features so that to achieve a more accurate prediction in identifying the lesion types and regions in GI tract endoscopic images. We further adopted the active learning in TransMT-Net to tackle the labeled image-hungry problem. A dataset was created from the CVC-ClinicDB dataset, Macau Kiang Wu Hospital, and Zhongshan Hospital to evaluate the model performance. Then, the experimental results show that our model not only achieved 96.94% accuracy in the classification task and 77.76% Dice Similarity Coefficient in the segmentation task but also outperformed those of other models on our test set. Meanwhile, active learning also produced positive results for the performance of our model with a small-scale initial training set, and even its performance with 30% of the initial training set was comparable to that of most comparable models with the full training set. Consequently, the proposed TransMT-Net has demonstrated its potential performance in GI tract endoscopic images and it through active learning can alleviate the shortage of labeled images.
Collapse
Affiliation(s)
- Suigu Tang
- Faculty of Innovation Engineering-School of Computer Science and Engineering, Macau University of Science and Technology, Macao Special Administrative Region of China
| | - Xiaoyuan Yu
- Faculty of Innovation Engineering-School of Computer Science and Engineering, Macau University of Science and Technology, Macao Special Administrative Region of China
| | - Chak Fong Cheang
- Faculty of Innovation Engineering-School of Computer Science and Engineering, Macau University of Science and Technology, Macao Special Administrative Region of China.
| | - Yanyan Liang
- Faculty of Innovation Engineering-School of Computer Science and Engineering, Macau University of Science and Technology, Macao Special Administrative Region of China
| | - Penghui Zhao
- Faculty of Innovation Engineering-School of Computer Science and Engineering, Macau University of Science and Technology, Macao Special Administrative Region of China
| | - Hon Ho Yu
- Kiang Wu Hospital, Macao Special Administrative Region of China
| | - I Cheong Choi
- Kiang Wu Hospital, Macao Special Administrative Region of China
| |
Collapse
|
10
|
Li M, Chen C, Cao Y, Zhou P, Deng X, Liu P, Wang Y, Lv X, Chen C. CIABNet: Category imbalance attention block network for the classification of multi-differentiated types of esophageal cancer. Med Phys 2023; 50:1507-1527. [PMID: 36272103 DOI: 10.1002/mp.16067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/25/2022] [Accepted: 09/09/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Esophageal cancer has become one of the important cancers that seriously threaten human life and health, and its incidence and mortality rate are still among the top malignant tumors. Histopathological image analysis is the gold standard for diagnosing different differentiation types of esophageal cancer. PURPOSE The grading accuracy and interpretability of the auxiliary diagnostic model for esophageal cancer are seriously affected by small interclass differences, imbalanced data distribution, and poor model interpretability. Therefore, we focused on developing the category imbalance attention block network (CIABNet) model to try to solve the previous problems. METHODS First, the quantitative metrics and model visualization results are integrated to transfer knowledge from the source domain images to better identify the regions of interest (ROI) in the target domain of esophageal cancer. Second, in order to pay attention to the subtle interclass differences, we propose the concatenate fusion attention block, which can focus on the contextual local feature relationships and the changes of channel attention weights among different regions simultaneously. Third, we proposed a category imbalance attention module, which treats each esophageal cancer differentiation class fairly based on aggregating different intensity information at multiple scales and explores more representative regional features for each class, which effectively mitigates the negative impact of category imbalance. Finally, we use feature map visualization to focus on interpreting whether the ROIs are the same or similar between the model and pathologists, thus better improving the interpretability of the model. RESULTS The experimental results show that the CIABNet model outperforms other state-of-the-art models, which achieves the most advanced results in classifying the differentiation types of esophageal cancer with an average classification accuracy of 92.24%, an average precision of 93.52%, an average recall of 90.31%, an average F1 value of 91.73%, and an average AUC value of 97.43%. In addition, the CIABNet model has essentially similar or identical to the ROI of pathologists in identifying histopathological images of esophageal cancer. CONCLUSIONS Our experimental results prove that our proposed computer-aided diagnostic algorithm shows great potential in histopathological images of multi-differentiated types of esophageal cancer.
Collapse
Affiliation(s)
- Min Li
- College of Information Science and Engineering, Xinjiang University, Urumqi, China
- Key Laboratory of Signal Detection and Processing, Xinjiang University, Urumqi, China
| | - Chen Chen
- College of Information Science and Engineering, Xinjiang University, Urumqi, China
- Xinjiang Cloud Computing Application Laboratory, Karamay, China
| | - Yanzhen Cao
- Department of Pathology, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Panyun Zhou
- College of Software, Xinjiang University, Urumqi, China
| | - Xin Deng
- College of Software, Xinjiang University, Urumqi, China
| | - Pei Liu
- College of Information Science and Engineering, Xinjiang University, Urumqi, China
| | - Yunling Wang
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiaoyi Lv
- College of Information Science and Engineering, Xinjiang University, Urumqi, China
- Key Laboratory of Signal Detection and Processing, Xinjiang University, Urumqi, China
- Xinjiang Cloud Computing Application Laboratory, Karamay, China
- College of Software, Xinjiang University, Urumqi, China
- Key Laboratory of software engineering technology, Xinjiang University, Urumqi, China
| | - Cheng Chen
- College of Software, Xinjiang University, Urumqi, China
| |
Collapse
|
11
|
Lonseko ZM, Du W, Adjei PE, Luo C, Hu D, Gan T, Zhu L, Rao N. Semi-Supervised Segmentation Framework for Gastrointestinal Lesion Diagnosis in Endoscopic Images. J Pers Med 2023; 13:jpm13010118. [PMID: 36675779 PMCID: PMC9864320 DOI: 10.3390/jpm13010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Accurate gastrointestinal (GI) lesion segmentation is crucial in diagnosing digestive tract diseases. An automatic lesion segmentation in endoscopic images is vital to relieving physicians' burden and improving the survival rate of patients. However, pixel-wise annotations are highly intensive, especially in clinical settings, while numerous unlabeled image datasets could be available, although the significant results of deep learning approaches in several tasks heavily depend on large labeled datasets. Limited labeled data also hinder trained models' generalizability under fully supervised learning for computer-aided diagnosis (CAD) systems. METHODS This work proposes a generative adversarial learning-based semi-supervised segmentation framework for GI lesion diagnosis in endoscopic images to tackle the challenge of limited annotations. The proposed approach leverages limited annotated and large unlabeled datasets in the training networks. We extensively tested the proposed method on 4880 endoscopic images. RESULTS Compared with current related works, the proposed method validates better results (Dice similarity coefficient = 89.42 ± 3.92, Intersection over union = 80.04 ± 5.75, Precision = 91.72 ± 4.05, Recall = 90.11 ± 5.64, and Hausdorff distance = 23.28 ± 14.36) on the challenging multi-sited datasets, confirming the effectiveness of the proposed framework. CONCLUSION We explore a semi-supervised lesion segmentation method to employ the full use of multiple unlabeled endoscopic images to improve lesion segmentation accuracy. Experimental results confirmed the potential of our method and outperformed promising results compared with the current related works. The proposed CAD system can minimize diagnostic errors.
Collapse
Affiliation(s)
- Zenebe Markos Lonseko
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Public Health, College of Health Sciences and Medicine, Dilla University, Dilla P.O. Box 419, Ethiopia
| | - Wenju Du
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Prince Ebenezer Adjei
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
- Department of Computer Engineering, Kwame Nkrumah University of Science and Technology, Kumasi AK-039-5028, Ghana
| | - Chengsi Luo
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dingcan Hu
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Tao Gan
- Digestive Endoscopic Center of West China Hospital, Sichuan University, Chengdu 610017, China
| | - Linlin Zhu
- Digestive Endoscopic Center of West China Hospital, Sichuan University, Chengdu 610017, China
| | - Nini Rao
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
- Correspondence:
| |
Collapse
|
12
|
Wang B, Qin X, Meng K, Zhu L, Li Z. Classification of Amino Acids Using Hybrid Terahertz Spectrum and an Efficient Channel Attention Convolutional Neural Network. NANOMATERIALS 2022; 12:nano12122114. [PMID: 35745458 PMCID: PMC9231080 DOI: 10.3390/nano12122114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/04/2022]
Abstract
Terahertz (THz) spectroscopy is the de facto method to study the vibration modes and rotational energy levels of molecules and is a widely used molecular sensor for non-destructive inspection. Here, based on the THz spectra of 20 amino acids, a method that extracts high-dimensional features from a hybrid spectrum combined with absorption rate and refractive index is proposed. A convolutional neural network (CNN) calibrated by efficient channel attention (ECA) is designed to learn from the high-dimensional features and make classifications. The proposed method achieves an accuracy of 99.9% and 99.2% on two testing datasets, which are 12.5% and 23% higher than the method solely classifying the absorption spectrum. The proposed method also realizes a processing speed of 3782.46 frames per second (fps), which is the highest among all the methods in comparison. Due to the compact size, high accuracy, and high speed, the proposed method is viable for future applications in THz chemical sensors.
Collapse
Affiliation(s)
- Bo Wang
- Quenda Terahertz Technologies, Ltd., 600 Jiushui E Rd., Qingdao 266102, China;
| | - Xiaoling Qin
- School of Space Science and Physics, Shandong University, 180 Wenhua W Rd., Weihai 264209, China;
| | - Kun Meng
- Quenda Terahertz Technologies, Ltd., 600 Jiushui E Rd., Qingdao 266102, China;
- Correspondence:
| | - Liguo Zhu
- College of Engineering Physics, Shenzhen Technology University, 3002 Lantian Rd., Shenzhen 518060, China;
| | - Zeren Li
- Institute of Fluid Physics, 64 Mianshan Rd., Mianyang 621900, China;
| |
Collapse
|
13
|
Tang S, Yu X, Cheang CF, Hu Z, Fang T, Choi IC, Yu HH. Diagnosis of Esophageal Lesions by Multi-Classification and Segmentation Using an Improved Multi-Task Deep Learning Model. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22041492. [PMID: 35214396 PMCID: PMC8876234 DOI: 10.3390/s22041492] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 05/03/2023]
Abstract
It is challenging for endoscopists to accurately detect esophageal lesions during gastrointestinal endoscopic screening due to visual similarities among different lesions in terms of shape, size, and texture among patients. Additionally, endoscopists are busy fighting esophageal lesions every day, hence the need to develop a computer-aided diagnostic tool to classify and segment the lesions at endoscopic images to reduce their burden. Therefore, we propose a multi-task classification and segmentation (MTCS) model, including the Esophageal Lesions Classification Network (ELCNet) and Esophageal Lesions Segmentation Network (ELSNet). The ELCNet was used to classify types of esophageal lesions, and the ELSNet was used to identify lesion regions. We created a dataset by collecting 805 esophageal images from 255 patients and 198 images from 64 patients to train and evaluate the MTCS model. Compared with other methods, the proposed not only achieved a high accuracy (93.43%) in classification but achieved a dice similarity coefficient (77.84%) in segmentation. In conclusion, the MTCS model can boost the performance of endoscopists in the detection of esophageal lesions as it can accurately multi-classify and segment the lesions and is a potential assistant for endoscopists to reduce the risk of oversight.
Collapse
Affiliation(s)
- Suigu Tang
- Faculty of Information Technology, Macau University of Science and Technology, Macau 999078, China; (S.T.); (X.Y.); (Z.H.); (T.F.)
| | - Xiaoyuan Yu
- Faculty of Information Technology, Macau University of Science and Technology, Macau 999078, China; (S.T.); (X.Y.); (Z.H.); (T.F.)
| | - Chak-Fong Cheang
- Faculty of Information Technology, Macau University of Science and Technology, Macau 999078, China; (S.T.); (X.Y.); (Z.H.); (T.F.)
- Correspondence:
| | - Zeming Hu
- Faculty of Information Technology, Macau University of Science and Technology, Macau 999078, China; (S.T.); (X.Y.); (Z.H.); (T.F.)
| | - Tong Fang
- Faculty of Information Technology, Macau University of Science and Technology, Macau 999078, China; (S.T.); (X.Y.); (Z.H.); (T.F.)
| | - I-Cheong Choi
- Kiang Wu Hospital, Macau 999078, China; (I.-C.C.); (H.-H.Y.)
| | - Hon-Ho Yu
- Kiang Wu Hospital, Macau 999078, China; (I.-C.C.); (H.-H.Y.)
| |
Collapse
|
14
|
Yu X, Tang S, Cheang CF, Yu HH, Choi IC. Multi-Task Model for Esophageal Lesion Analysis Using Endoscopic Images: Classification with Image Retrieval and Segmentation with Attention. SENSORS 2021; 22:s22010283. [PMID: 35009825 PMCID: PMC8749873 DOI: 10.3390/s22010283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022]
Abstract
The automatic analysis of endoscopic images to assist endoscopists in accurately identifying the types and locations of esophageal lesions remains a challenge. In this paper, we propose a novel multi-task deep learning model for automatic diagnosis, which does not simply replace the role of endoscopists in decision making, because endoscopists are expected to correct the false results predicted by the diagnosis system if more supporting information is provided. In order to help endoscopists improve the diagnosis accuracy in identifying the types of lesions, an image retrieval module is added in the classification task to provide an additional confidence level of the predicted types of esophageal lesions. In addition, a mutual attention module is added in the segmentation task to improve its performance in determining the locations of esophageal lesions. The proposed model is evaluated and compared with other deep learning models using a dataset of 1003 endoscopic images, including 290 esophageal cancer, 473 esophagitis, and 240 normal. The experimental results show the promising performance of our model with a high accuracy of 96.76% for the classification and a Dice coefficient of 82.47% for the segmentation. Consequently, the proposed multi-task deep learning model can be an effective tool to help endoscopists in judging esophageal lesions.
Collapse
Affiliation(s)
- Xiaoyuan Yu
- Faculty of Information Technology, Macau University of Science and Technology, Taipa, Macau; (X.Y.); (S.T.)
| | - Suigu Tang
- Faculty of Information Technology, Macau University of Science and Technology, Taipa, Macau; (X.Y.); (S.T.)
| | - Chak Fong Cheang
- Faculty of Information Technology, Macau University of Science and Technology, Taipa, Macau; (X.Y.); (S.T.)
- Correspondence: (C.F.C.); (H.H.Y.)
| | - Hon Ho Yu
- Kiang Wu Hospital, Santo António, Macau;
- Correspondence: (C.F.C.); (H.H.Y.)
| | | |
Collapse
|
15
|
Gastrointestinal Disease Classification in Endoscopic Images Using Attention-Guided Convolutional Neural Networks. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Gastrointestinal (GI) diseases constitute a leading problem in the human digestive system. Consequently, several studies have explored automatic classification of GI diseases as a means of minimizing the burden on clinicians and improving patient outcomes, for both diagnostic and treatment purposes. The challenge in using deep learning-based (DL) approaches, specifically a convolutional neural network (CNN), is that spatial information is not fully utilized due to the inherent mechanism of CNNs. This paper proposes the application of spatial factors in improving classification performance. Specifically, we propose a deep CNN-based spatial attention mechanism for the classification of GI diseases, implemented with encoder–decoder layers. To overcome the data imbalance problem, we adapt data-augmentation techniques. A total of 12,147 multi-sited, multi-diseased GI images, drawn from publicly available and private sources, were used to validate the proposed approach. Furthermore, a five-fold cross-validation approach was adopted to minimize inconsistencies in intra- and inter-class variability and to ensure that results were robustly assessed. Our results, compared with other state-of-the-art models in terms of mean accuracy (ResNet50 = 90.28, GoogLeNet = 91.38, DenseNets = 91.60, and baseline = 92.84), demonstrated better outcomes (Precision = 92.8, Recall = 92.7, F1-score = 92.8, and Accuracy = 93.19). We also implemented t-distributed stochastic neighbor embedding (t–SNE) and confusion matrix analysis techniques for better visualization and performance validation. Overall, the results showed that the attention mechanism improved the automatic classification of multi-sited GI disease images. We validated clinical tests based on the proposed method by overcoming previous limitations, with the goal of improving automatic classification accuracy in future work.
Collapse
|
16
|
Du W, Rao N, Yong J, Wang Y, Hu D, Gan T, Zhu L, Zeng B. Improving the Classification Performance of Esophageal Disease on Small Dataset by Semi-supervised Efficient Contrastive Learning. J Med Syst 2021; 46:4. [PMID: 34807297 DOI: 10.1007/s10916-021-01782-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/11/2021] [Indexed: 02/05/2023]
Abstract
The classification of esophageal disease based on gastroscopic images is important in the clinical treatment, and is also helpful in providing patients with follow-up treatment plans and preventing lesion deterioration. In recent years, deep learning has achieved many satisfactory results in gastroscopic image classification tasks. However, most of them need a training set that consists of large numbers of images labeled by experienced experts. To reduce the image annotation burdens and improve the classification ability on small labeled gastroscopic image datasets, this study proposed a novel semi-supervised efficient contrastive learning (SSECL) classification method for esophageal disease. First, an efficient contrastive pair generation (ECPG) module was proposed to generate efficient contrastive pairs (ECPs), which took advantage of the high similarity features of images from the same lesion. Then, an unsupervised visual feature representation containing the general feature of esophageal gastroscopic images is learned by unsupervised efficient contrastive learning (UECL). At last, the feature representation will be transferred to the down-stream esophageal disease classification task. The experimental results have demonstrated that the classification accuracy of SSECL is 92.57%, which is better than that of the other state-of-the-art semi-supervised methods and is also higher than the classification method based on transfer learning (TL) by 2.28%. Thus, SSECL has solved the challenging problem of improving the classification result on small gastroscopic image dataset by fully utilizing the unlabeled gastroscopic images and the high similarity information among images from the same lesion. It also brings new insights into medical image classification tasks.
Collapse
Affiliation(s)
- Wenju Du
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Nini Rao
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Jiahao Yong
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yingchun Wang
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Dingcan Hu
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Tao Gan
- Digestive Endoscopic Center of West China Hospital, Sichuan University, Chengdu, 610017, China.
| | - Linlin Zhu
- Digestive Endoscopic Center of West China Hospital, Sichuan University, Chengdu, 610017, China
| | - Bing Zeng
- School of Information and Communication Engineering, University Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
17
|
Afzal Khan MN, Hong KS. Most favorable stimulation duration in the sensorimotor cortex for fNIRS-based BCI. BIOMEDICAL OPTICS EXPRESS 2021; 12:5939-5954. [PMID: 34745714 PMCID: PMC8547991 DOI: 10.1364/boe.434936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 05/13/2023]
Abstract
One of the primary objectives of the brain-computer interface (BCI) is to obtain a command with higher classification accuracy within the shortest possible time duration. Therefore, this study evaluates several stimulation durations to propose a duration that can yield the highest classification accuracy. Furthermore, this study aims to address the inherent delay in the hemodynamic responses (HRs) for the command generation time. To this end, HRs in the sensorimotor cortex were evaluated for the functional near-infrared spectroscopy (fNIRS)-based BCI. To evoke brain activity, right-hand-index finger poking and tapping tasks were used. In this study, six different stimulation durations (i.e., 1, 3, 5, 7, 10, and 15 s) were tested on 10 healthy male subjects. Upon stimulation, different temporal features and multiple time windows were utilized to extract temporal features. The extracted features were then classified using linear discriminant analysis. The classification results using the main HR showed that a 5 s stimulation duration could yield the highest classification accuracy, i.e., 74%, with a combination of the mean and maximum value features. However, the results were not significantly different from the classification accuracy obtained using the 15 s stimulation. To further validate the results, a classification using the initial dip was performed. The results obtained endorsed the finding with an average classification accuracy of 73.5% using the features of minimum peak and skewness in the 5 s window. The results based on classification using the initial dip for 5 s were significantly different from all other tested stimulation durations (p < 0.05) for all feature combinations. Moreover, from the visual inspection of the HRs, it is observed that the initial dip occurred as soon as the task started, but the main HR had a delay of more than 2 s. Another interesting finding is that impulsive stimulation in the sensorimotor cortex can result in the generation of a clearer initial dip phenomenon. The results reveal that the command for the fNIRS-based BCI can be generated using the 5 s stimulation duration. In conclusion, the use of the initial dip can reduce the time taken for the generation of commands and can be used to achieve a higher classification accuracy for the fNIRS-BCI within a 5 s task duration rather than relying on longer durations.
Collapse
Affiliation(s)
- M. N. Afzal Khan
- School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
18
|
Meglinski I, Novikova T, Dholakia K. Polarization and Orbital Angular Momentum of Light in Biomedical Applications: feature issue introduction. BIOMEDICAL OPTICS EXPRESS 2021; 12:6255-6258. [PMID: 34745733 PMCID: PMC8548002 DOI: 10.1364/boe.442828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Indexed: 05/25/2023]
Abstract
In the last decade, consistent and successful innovations have been achieved in the field of lasers and optics, collectively known as 'photonics', founding new applications in biomedicine, including clinical biopsy. Non-invasive photonics-based diagnostic modalities are rapidly expanding, and with their exponential improvement, there is a great potential to develop practical instrumentation for automatic detection and identification of different types and/or sub-types of diseases at a very early stage. While using conventional light for the studies of different properties of objects in materials science, astrophysics and biomedicine already has a long history, the interaction of polarized light and optical angular momentum with turbid tissue-like scattering media has not yet been ultimately explored. Since recently this research area became a hot topic. This feature issue is a first attempt to summarize the recognitions achieved in this emerging research field of polarized light and optical angular momentum for practical biomedical applications during the last years.
Collapse
Affiliation(s)
- Igor Meglinski
- College of Engineering and Physical Science, Aston University, Birmingham, B4 7ET, United Kingdom
- Institute of Clinical Medicine N.V. Sklifosovsky, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Optoelectronics and Measurement Techniques, ITEE, University of Oulu, Oulu, Finland
| | - Tatiana Novikova
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
- Department of Biomedical Engineering, College of Engineering and Computing, Florida International University, Miami, FL 33174, USA
| | - Kishan Dholakia
- SUPA, School of Physics & Astronomy, University of St. Andrews, St. Andrews, KY16 9SS, United Kingdom
- Department of Physics, College of Science, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|