1
|
Gröger A, Kuschmierz R, Birk A, Pedrini G, Reichelt S. Two-wavelength holographic micro-endoscopy. OPTICS EXPRESS 2024; 32:23687-23701. [PMID: 39538825 DOI: 10.1364/oe.527958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/03/2024] [Indexed: 11/16/2024]
Abstract
In this paper, we present a method for micro-endoscopic topography measurement utilizing two-wavelength holography. Initially, we evaluate the inter-core dispersion and cross-talk of two commercially available imaging fiber bundles (CFBs) and introduce the concept of virtual surface roughness as a limiting factor of achievable measurement resolution. Subsequently, we describe a micro-endoscope setup incorporating 3D-printed micro-optics, resulting in a total diameter of less than 450 µm. We evaluate the measurement accuracy using a pyramid-shaped test object and demonstrate that a relative measurement error of 7.5% can be achieved with a simple phase unwrapping approach. Moreover, we demonstrate how leveraging a deep learning approach from existing literature, tailored for heavily noisy phase maps, effectively reduces the relative measurement error. The standard deviation of the measurement error is 4.2 times lower with the deep learning approach.
Collapse
|
2
|
Kvåle Løvmo M, Deng S, Moser S, Leitgeb R, Drexler W, Ritsch-Marte M. Ultrasound-induced reorientation for multi-angle optical coherence tomography. Nat Commun 2024; 15:2391. [PMID: 38493195 PMCID: PMC10944478 DOI: 10.1038/s41467-024-46506-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
Organoid and spheroid technology provide valuable insights into developmental biology and oncology. Optical coherence tomography (OCT) is a label-free technique that has emerged as an excellent tool for monitoring the structure and function of these samples. However, mature organoids are often too opaque for OCT. Access to multi-angle views is highly desirable to overcome this limitation, preferably with non-contact sample handling. To fulfil these requirements, we present an ultrasound-induced reorientation method for multi-angle-OCT, which employs a 3D-printed acoustic trap inserted into an OCT imaging system, to levitate and reorient zebrafish larvae and tumor spheroids in a controlled and reproducible manner. A model-based algorithm was developed for the physically consistent fusion of multi-angle data from a priori unknown angles. We demonstrate enhanced penetration depth in the joint 3D-recovery of reflectivity, attenuation, refractive index, and position registration for zebrafish larvae, creating an enabling tool for future applications in volumetric imaging.
Collapse
Affiliation(s)
- Mia Kvåle Løvmo
- Institute of Biomedical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Shiyu Deng
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Simon Moser
- Institute of Biomedical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Rainer Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Monika Ritsch-Marte
- Institute of Biomedical Physics, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
3
|
Sun J, Yang B, Koukourakis N, Guck J, Czarske JW. AI-driven projection tomography with multicore fibre-optic cell rotation. Nat Commun 2024; 15:147. [PMID: 38167247 PMCID: PMC10762230 DOI: 10.1038/s41467-023-44280-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Optical tomography has emerged as a non-invasive imaging method, providing three-dimensional insights into subcellular structures and thereby enabling a deeper understanding of cellular functions, interactions, and processes. Conventional optical tomography methods are constrained by a limited illumination scanning range, leading to anisotropic resolution and incomplete imaging of cellular structures. To overcome this problem, we employ a compact multi-core fibre-optic cell rotator system that facilitates precise optical manipulation of cells within a microfluidic chip, achieving full-angle projection tomography with isotropic resolution. Moreover, we demonstrate an AI-driven tomographic reconstruction workflow, which can be a paradigm shift from conventional computational methods, often demanding manual processing, to a fully autonomous process. The performance of the proposed cell rotation tomography approach is validated through the three-dimensional reconstruction of cell phantoms and HL60 human cancer cells. The versatility of this learning-based tomographic reconstruction workflow paves the way for its broad application across diverse tomographic imaging modalities, including but not limited to flow cytometry tomography and acoustic rotation tomography. Therefore, this AI-driven approach can propel advancements in cell biology, aiding in the inception of pioneering therapeutics, and augmenting early-stage cancer diagnostics.
Collapse
Affiliation(s)
- Jiawei Sun
- Shanghai Artificial Intelligence Laboratory, Longwen Road 129, Xuhui District, 200232, Shanghai, China.
- Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany.
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Dresden, Germany.
| | - Bin Yang
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Dresden, Germany
| | - Nektarios Koukourakis
- Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Dresden, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Juergen W Czarske
- Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany.
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Dresden, Germany.
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
- Institute of Applied Physics, TU Dresden, Dresden, Germany.
| |
Collapse
|
4
|
Sun J, Czarske JW. Compressive holographic sensing simplifies quantitative phase imaging. LIGHT, SCIENCE & APPLICATIONS 2023; 12:121. [PMID: 37198148 DOI: 10.1038/s41377-023-01145-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Quantitative phase imaging (QPI) has emerged as method for investigating biological specimen and technical objects. However, conventional methods often suffer from shortcomings in image quality, such as the twin image artifact. A novel computational framework for QPI is presented with high quality inline holographic imaging from a single intensity image. This paradigm shift is promising for advanced QPI of cells and tissues.
Collapse
Affiliation(s)
- Jiawei Sun
- Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Dresden, Germany
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany
| | - Juergen W Czarske
- Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Dresden, Germany.
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany.
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
- Institute of Applied Physics, TU Dresden, Dresden, Germany.
| |
Collapse
|
5
|
Zeng K, Pu J, Xu X, Wu Y, Xiao D, Wu X. Gradient torque and its effect on rotational dynamics of optically trapped non-spherical particles in the elliptic Gaussian beam. OPTICS EXPRESS 2023; 31:16582-16592. [PMID: 37157734 DOI: 10.1364/oe.488217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Rotational motion of the optically trapped particle is a topic of enduring interest, while the changes of angular velocity in one rotation period remain largely unexplored. Here, we proposed the optical gradient torque in the elliptic Gaussian beam, and the instantaneous angular velocities of alignment and fluctuant rotation of the trapped non-spherical particles are investigated for the first time. The fluctuant rotations of optically trapped particles are observed, and the angular velocity fluctuated twice per rotation period, which can be used to determine the shape of trapped particles. Meanwhile, a compact optical wrench is invented based on the alignment, and its torque is adjustable and is larger than the torque of a linearly polarized wrench with the same power. These results provide a foundation for precisely modelling the rotational dynamics of optically trapped particles, and the presented wrench is expected to be a simple and practical micro-manipulating tool.
Collapse
|
6
|
Learned end-to-end high-resolution lensless fiber imaging towards real-time cancer diagnosis. Sci Rep 2022; 12:18846. [PMID: 36344626 PMCID: PMC9640670 DOI: 10.1038/s41598-022-23490-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Recent advances in label-free histology promise a new era for real-time diagnosis in neurosurgery. Deep learning using autofluorescence is promising for tumor classification without histochemical staining process. The high image resolution and minimally invasive diagnostics with negligible tissue damage is of great importance. The state of the art is raster scanning endoscopes, but the distal lens optics limits the size. Lensless fiber bundle endoscopy offers both small diameters of a few 100 microns and the suitability as single-use probes, which is beneficial in sterilization. The problem is the inherent honeycomb artifacts of coherent fiber bundles (CFB). For the first time, we demonstrate an end-to-end lensless fiber imaging with exploiting the near-field. The framework includes resolution enhancement and classification networks that use single-shot CFB images to provide both high-resolution imaging and tumor diagnosis. The well-trained resolution enhancement network not only recovers high-resolution features beyond the physical limitations of CFB, but also helps improving tumor recognition rate. Especially for glioblastoma, the resolution enhancement network helps increasing the classification accuracy from 90.8 to 95.6%. The novel technique enables histological real-time imaging with lensless fiber endoscopy and is promising for a quick and minimally invasive intraoperative treatment and cancer diagnosis in neurosurgery.
Collapse
|
7
|
Sun J, Wu J, Wu S, Goswami R, Girardo S, Cao L, Guck J, Koukourakis N, Czarske JW. Quantitative phase imaging through an ultra-thin lensless fiber endoscope. LIGHT, SCIENCE & APPLICATIONS 2022; 11:204. [PMID: 35790748 PMCID: PMC9255502 DOI: 10.1038/s41377-022-00898-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 05/29/2023]
Abstract
Quantitative phase imaging (QPI) is a label-free technique providing both morphology and quantitative biophysical information in biomedicine. However, applying such a powerful technique to in vivo pathological diagnosis remains challenging. Multi-core fiber bundles (MCFs) enable ultra-thin probes for in vivo imaging, but current MCF imaging techniques are limited to amplitude imaging modalities. We demonstrate a computational lensless microendoscope that uses an ultra-thin bare MCF to perform quantitative phase imaging with microscale lateral resolution and nanoscale axial sensitivity of the optical path length. The incident complex light field at the measurement side is precisely reconstructed from the far-field speckle pattern at the detection side, enabling digital refocusing in a multi-layer sample without any mechanical movement. The accuracy of the quantitative phase reconstruction is validated by imaging the phase target and hydrogel beads through the MCF. With the proposed imaging modality, three-dimensional imaging of human cancer cells is achieved through the ultra-thin fiber endoscope, promising widespread clinical applications.
Collapse
Affiliation(s)
- Jiawei Sun
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany.
- Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Dresden, Germany.
| | - Jiachen Wu
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, 100084, Beijing, China
| | - Song Wu
- Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstraße 20, 01069, Dresden, Germany
| | - Ruchi Goswami
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Salvatore Girardo
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Liangcai Cao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, 100084, Beijing, China
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Nektarios Koukourakis
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany.
- Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Dresden, Germany.
| | - Juergen W Czarske
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany.
- Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Dresden, Germany.
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
- Institute of Applied Physics, TU Dresden, Dresden, Germany.
| |
Collapse
|
8
|
Sun J, Wu J, Koukourakis N, Cao L, Kuschmierz R, Czarske J. Real-time complex light field generation through a multi-core fiber with deep learning. Sci Rep 2022; 12:7732. [PMID: 35546604 PMCID: PMC9095618 DOI: 10.1038/s41598-022-11803-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/28/2022] [Indexed: 12/26/2022] Open
Abstract
The generation of tailored complex light fields with multi-core fiber (MCF) lensless microendoscopes is widely used in biomedicine. However, the computer-generated holograms (CGHs) used for such applications are typically generated by iterative algorithms, which demand high computation effort, limiting advanced applications like fiber-optic cell manipulation. The random and discrete distribution of the fiber cores in an MCF induces strong spatial aliasing to the CGHs, hence, an approach that can rapidly generate tailored CGHs for MCFs is highly demanded. We demonstrate a novel deep neural network-CoreNet, providing accurate tailored CGHs generation for MCFs at a near video rate. The CoreNet is trained by unsupervised learning and speeds up the computation time by two magnitudes with high fidelity light field generation compared to the previously reported CGH algorithms for MCFs. Real-time generated tailored CGHs are on-the-fly loaded to the phase-only spatial light modulator (SLM) for near video-rate complex light fields generation through the MCF microendoscope. This paves the avenue for real-time cell rotation and several further applications that require real-time high-fidelity light delivery in biomedicine.
Collapse
Affiliation(s)
- Jiawei Sun
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany. .,Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Dresden, Germany.
| | - Jiachen Wu
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany. .,State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, 100084, China.
| | - Nektarios Koukourakis
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany.,Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Dresden, Germany
| | - Liangcai Cao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, 100084, China
| | - Robert Kuschmierz
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany.,Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Dresden, Germany
| | - Juergen Czarske
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany. .,Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Dresden, Germany. .,Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany. .,Institute of Applied Physics, TU Dresden, Dresden, Germany.
| |
Collapse
|
9
|
Rothe S, Daferner P, Heide S, Krause D, Schmieder F, Koukourakis N, Czarske JW. Benchmarking analysis of computer generated holograms for complex wavefront shaping using pixelated phase modulators. OPTICS EXPRESS 2021; 29:37602-37616. [PMID: 34808829 DOI: 10.1364/oe.434842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Wavefront shaping with spatial light modulators (SLMs) enables aberration correction, especially for light control through complex media, like biological tissues and multimode fibres. High-fidelity light field shaping is associated with the calculation of computer generated holograms (CGHs), of which there are a variety of algorithms. The achievable performance of CGH algorithms depends on various parameters. In this paper, four different algorithms for CGHs are presented and compared for complex light field generation. Two iterative, double constraint Gerchberg-Saxton and direct search, and the two analytical, superpixel and phase encoding, algorithms are investigated. For each algorithm, a parameter study is performed varying the modulator's pixel number and phase resolution. The analysis refers to mode field generation in multimode fibre endoscopes and communication. This enables generality by generating specific mode combinations according to certain spatial frequency power spectra. Thus, the algorithms are compared varying spatial frequencies applied to different implementation scenarios. Our results demonstrate that the choice of algorithms has a significant impact on the achievable performance. This comprehensive study provides the required guide for CGH algorithm selection, improving holographic systems towards multimode fibre endoscopy and communications.
Collapse
|