1
|
Montes-Robles R, Montanaro H, Capstick M, Ibáñez-Civera J, Masot-Peris R, García-Breijo E, Laguarda-Miró N, Martínez-Máñez R. Tailored cancer therapy by magnetic nanoparticle hyperthermia: A virtual scenario simulation method. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107185. [PMID: 36279641 DOI: 10.1016/j.cmpb.2022.107185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/04/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVE Hyperthermia is a cancer treatment aiming to induce cell death by directly warming cancerous tissues above 40 °C. This technique can be applied both individually and together with other cancer therapies. The main challenge for researchers and medics is to heat only tumoral cells avoiding global or localized heating of sane tissues. The objective in this study is to provide a realistic virtual scenario to develop an optimized multi-site injection plan for tailored magnetic nanoparticle-mediated hyperthermia applications. METHODS A three-dimensional model of a cat's back was tested in three different simulation scenarios, showing the impact of magnetic nanoparticles in each specific environment configuration. RESULTS As a result of this study. This simulation method can, minimising the affection to healthy tissue. CONCLUSIONS This virtual method will help real and personalized therapy planning and tailor the dose and distribution of magnetic nanoparticles for an enhanced hyperthermia cancer treatment.
Collapse
Affiliation(s)
- Roberto Montes-Robles
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Universitat Politècnica de València (UPV), Universitat de València (UV), Valencia, Spain
| | - Hazael Montanaro
- ITIS Foundation for Research on Information Technologies in Society, Zurich, Switzerland; Swiss Federal Institute of Technology (ETHZ), Zurich, Switzerland
| | - Myles Capstick
- ITIS Foundation for Research on Information Technologies in Society, Zurich, Switzerland
| | - Javier Ibáñez-Civera
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Universitat Politècnica de València (UPV), Universitat de València (UV), Valencia, Spain
| | - Rafael Masot-Peris
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Universitat Politècnica de València (UPV), Universitat de València (UV), Valencia, Spain
| | - Eduardo García-Breijo
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Universitat Politècnica de València (UPV), Universitat de València (UV), Valencia, Spain
| | - Nicolás Laguarda-Miró
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Universitat Politècnica de València (UPV), Universitat de València (UV), Valencia, Spain.
| | - Ramón Martínez-Máñez
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Universitat Politècnica de València (UPV), Universitat de València (UV), Valencia, Spain; CIBER in the Subject Area of de Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; ITIS Foundation for Research on Information Technologies in Society, Zurich, Switzerland
| |
Collapse
|
2
|
Capart A, Metwally K, Bastiancich C, Da Silva A. Multiphysical numerical study of photothermal therapy of glioblastoma with photoacoustic temperature monitoring in a mouse head. BIOMEDICAL OPTICS EXPRESS 2022; 13:1202-1223. [PMID: 35414964 PMCID: PMC8973158 DOI: 10.1364/boe.444193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 05/02/2023]
Abstract
This paper presents a multiphysical numerical study of a photothermal therapy performed on a numerical phantom of a mouse head containing a glioblastoma. The study has been designed to be as realistic as possible. Heat diffusion simulations were performed on the phantom to understand the temperature evolution in the mouse head and therefore in the glioblastoma. The thermal dose has been calculated and lesions caused by heat are shown. The thermal damage on the tumor has also been quantified. To improve the effectiveness of the therapy, the photoabsorber's concentration was increased locally, at the tumor site, to mimic the effect of using absorbing contrast agents such as nanoparticles. Photoacoustic simulations were performed in order to monitor temperature in the phantom: as the Grüneisen parameter changes with the temperature, the photoacoustic signal undergoes changes that can be linked to temperature evolution. These photoacoustic simulations were performed at different instants during the therapy and the evolution of the photoacoustic signal as a function of the spatio-temporal distribution of the temperature in the phantom was observed and quantified. We have developed in this paper a numerical tool that can be used to help defining key parameters of a photothermal therapy.
Collapse
Affiliation(s)
- Antoine Capart
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Khaled Metwally
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
- Aix Marseille Univ, CNRS, Centrale Marseille, LMA, Marseille, France
| | - Chiara Bastiancich
- Institute Neurophysiopathol, INP, CNRS, Aix-Marseille University, 13005 Marseille, France
| | - Anabela Da Silva
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| |
Collapse
|
3
|
Veysset D, Ling T, Zhuo Y, Pandiyan VP, Sabesan R, Palanker D. Interferometric imaging of thermal expansion for temperature control in retinal laser therapy. BIOMEDICAL OPTICS EXPRESS 2022; 13:728-743. [PMID: 35284191 PMCID: PMC8884207 DOI: 10.1364/boe.448803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Precise control of the temperature rise is a prerequisite for proper photothermal therapy. In retinal laser therapy, the heat deposition is primarily governed by the melanin concentration, which can significantly vary across the retina and from patient to patient. In this work, we present a method for determining the optical and thermal properties of layered materials, directly applicable to the retina, using low-energy laser heating and phase-resolved optical coherence tomography (pOCT). The method is demonstrated on a polymer-based tissue phantom heated with a laser pulse focused onto an absorbing layer buried below the phantom's surface. Using a line-scan spectral-domain pOCT, optical path length changes induced by the thermal expansion were extracted from sequential B-scans. The material properties were then determined by matching the optical path length changes to a thermo-mechanical model developed for fast computation. This method determined the absorption coefficient with a precision of 2.5% and the temperature rise with a precision of about 0.2°C from a single laser exposure, while the peak did not exceed 8°C during 1 ms pulse, which is well within the tissue safety range and significantly more precise than other methods.
Collapse
Affiliation(s)
- David Veysset
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA
- Department of Ophthalmology, Stanford University, Stanford, CA 94305, USA
| | - Tong Ling
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA
- Department of Ophthalmology, Stanford University, Stanford, CA 94305, USA
- Present address: School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Yueming Zhuo
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | | | - Ramkumar Sabesan
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA
| | - Daniel Palanker
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA
- Department of Ophthalmology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|