1
|
Kim YW, Sharpe GP, Siber J, Keßler R, Fischer J, Otto T, Chauhan BC. Critical Impact of Working Distance on OCT Imaging: Correction of Optical Distortion and Its Effects on Measuring Retinal Curvature. Invest Ophthalmol Vis Sci 2024; 65:10. [PMID: 39374011 PMCID: PMC11463703 DOI: 10.1167/iovs.65.12.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/15/2024] [Indexed: 10/08/2024] Open
Abstract
Purpose To assess the impact of working distance (WD) on optical distortion in optical coherence tomography (OCT) imaging and to evaluate the effectiveness of optical distortion correction in achieving consistent retinal Bruch's membrane (BM) layer curvature, regardless of variations in WD. Methods Ten subjects underwent OCT imaging with four serial macular volume scans, each employing distinct WD settings adjusted by balancing the sample and reference arm of the OCT interferometer (eye length settings changed). Either of two types of 30° standard objectives (SOs) was used. A ray tracing model was used to correct optical distortion, and BM layer curvature (represented as the second derivative of the curve) was measured. Linear mixed effects (LME) modeling was used to analyze factors associated with BM layer curvature, both before and after distortion correction. Results WD exhibited significant associations with axial length (β = -1.35, P < 0.001), SO type (P < 0.001), and eye length settings (P < 0.001). After optical distortion correction, the mean ± SD BM layer curvature significantly increased from 16.80 ± 10.08 µm-1 to 49.31 ± 7.50 µm-1 (P < 0.001). The LME model showed a significant positive association between BM layer curvature and WD (β = 1.94, P < 0.001). After distortion correction, the percentage change in BM layer curvature due to a 1-mm WD alteration decreased from 9.75% to 0.25%. Conclusions Correcting optical distortion in OCT imaging significantly mitigates the influence of WD on BM layer curvature, enabling a more accurate analysis of posterior eye morphology, especially when variations in WD are unavoidable.
Collapse
Affiliation(s)
- Yong Woo Kim
- Department of Ophthalmology and Visual Sciences, Dalhousie University and Nova Scotia Health, Halifax, Nova Scotia, Canada
| | - Glen P. Sharpe
- Department of Ophthalmology and Visual Sciences, Dalhousie University and Nova Scotia Health, Halifax, Nova Scotia, Canada
| | - Julia Siber
- Heidelberg Engineering GmbH, Heidelberg, Germany
| | - Ralf Keßler
- Heidelberg Engineering GmbH, Heidelberg, Germany
| | - Jörg Fischer
- Heidelberg Engineering GmbH, Heidelberg, Germany
| | - Tilman Otto
- Heidelberg Engineering GmbH, Heidelberg, Germany
| | - Balwantray C. Chauhan
- Department of Ophthalmology and Visual Sciences, Dalhousie University and Nova Scotia Health, Halifax, Nova Scotia, Canada
| |
Collapse
|
2
|
Chua J, Tan B, Wong D, Garhöfer G, Liew XW, Popa-Cherecheanu A, Loong Chin CW, Milea D, Li-Hsian Chen C, Schmetterer L. Optical coherence tomography angiography of the retina and choroid in systemic diseases. Prog Retin Eye Res 2024; 103:101292. [PMID: 39218142 DOI: 10.1016/j.preteyeres.2024.101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Optical coherence tomography angiography (OCTA) has transformed ocular vascular imaging, revealing microvascular changes linked to various systemic diseases. This review explores its applications in diabetes, hypertension, cardiovascular diseases, and neurodegenerative diseases. While OCTA provides a valuable window into the body's microvasculature, interpreting the findings can be complex. Additionally, challenges exist due to the relative non-specificity of its findings where changes observed in OCTA might not be unique to a specific disease, variations between OCTA machines, the lack of a standardized normative database for comparison, and potential image artifacts. Despite these limitations, OCTA holds immense potential for the future. The review highlights promising advancements like quantitative analysis of OCTA images, integration of artificial intelligence for faster and more accurate interpretation, and multi-modal imaging combining OCTA with other techniques for a more comprehensive characterization of the ocular vasculature. Furthermore, OCTA's potential future role in personalized medicine, enabling tailored treatment plans based on individual OCTA findings, community screening programs for early disease detection, and longitudinal studies tracking disease progression over time is also discussed. In conclusion, OCTA presents a significant opportunity to improve our understanding and management of systemic diseases. Addressing current limitations and pursuing these exciting future directions can solidify OCTA as an indispensable tool for diagnosis, monitoring disease progression, and potentially guiding treatment decisions across various systemic health conditions.
Collapse
Affiliation(s)
- Jacqueline Chua
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Academic Clinical Program, Duke-NUS Medical School, National University of Singapore, Singapore
| | - Bingyao Tan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore
| | - Damon Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Academic Clinical Program, Duke-NUS Medical School, National University of Singapore, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore; Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria
| | - Xin Wei Liew
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alina Popa-Cherecheanu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Emergency University Hospital, Department of Ophthalmology, Bucharest, Romania
| | - Calvin Woon Loong Chin
- Academic Clinical Program, Duke-NUS Medical School, National University of Singapore, Singapore; National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Dan Milea
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Fondation Ophtalmologique Adolphe De Rothschild, Paris, France
| | - Christopher Li-Hsian Chen
- Memory Aging and Cognition Centre, Departments of Pharmacology and Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Leopold Schmetterer
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Academic Clinical Program, Duke-NUS Medical School, National University of Singapore, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore; Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland; Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria; Fondation Ophtalmologique Adolphe De Rothschild, Paris, France; Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Zhao Q, Zhao X, Luo Y, Yang Z. Ultra-Wide-Field Optical Coherence Tomography and Gaussian Curvature to Assess Macular and Paravascular Retinoschisis in High Myopia. Am J Ophthalmol 2024; 263:70-80. [PMID: 38401851 DOI: 10.1016/j.ajo.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
PURPOSE To evaluate the severity and related factors of macular retinoschisis (MRS) and paravascular retinoschisis (PVRS) in high myopia (HM) using ultra-wide-field optical coherence tomography (UWF-OCT) and a novel Gaussian curvature (K). DESIGN A cross-sectional study. METHODS Patients diagnosed with HM in Peking Union Medical College Hospital were recruited between January 2022 and November 2022. The presence and severity of retinoschisis, along with the three highest K values, were assessed using UWF-OCT and en face images. Logistic regressions were employed to identify factors associated with MRS, PVRS, and the severity of retinoschisis in the 24 × 20 mm scan region. RESULTS A total of 108 HM eyes from 55 patients were recruited. The highest Gaussian curvature (K1) was predominantly found in the vascular arcade (43, 40%). Multivariable logistic regression found that age and PVRS were significant risk factors for MRS occurrence (P < .05), while MRS and higher K1 were significantly associated with the presence of PVRS in HM patients (P < .05). The axial length (AL) and spherical equivalent were associated with the severity of MRS, while AL and K1 values were associated with the severity of retinoschisis in the 24 × 20 mm scan region (P < .05). CONCLUSIONS An association existed between large Gaussian curvature and the presence of MRS and PVRS, as well as the severity of retinoschisis in a wide field of view. UWF-OCT, which enables visualization of the central and peripheral retinal areas, holds promise as an imaging technique for the early detection of extrafoveal retinoschisis.
Collapse
Affiliation(s)
- Qing Zhao
- From the Department of Ophthalmology (Q.Z., X.Z., Y.L., Z.Y.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Ocular Fundus Diseases (Q.Z., X.Z., Y.L., Z.Y.), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinyu Zhao
- From the Department of Ophthalmology (Q.Z., X.Z., Y.L., Z.Y.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Ocular Fundus Diseases (Q.Z., X.Z., Y.L., Z.Y.), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yan Luo
- From the Department of Ophthalmology (Q.Z., X.Z., Y.L., Z.Y.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Ocular Fundus Diseases (Q.Z., X.Z., Y.L., Z.Y.), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhikun Yang
- From the Department of Ophthalmology (Q.Z., X.Z., Y.L., Z.Y.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Ocular Fundus Diseases (Q.Z., X.Z., Y.L., Z.Y.), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Burgoyne CF, Wang YX, Jeoung JW, Hong S, Gardiner S, Reynaud J, Fortune B, Girard MJA, Sharpe G, Nicolela M, Chauhan BC, Yang H. OCT Optic Nerve Head Morphology in Myopia II: Peri-Neural Canal Scleral Bowing and Choroidal Thickness in High Myopia-An American Ophthalmological Society Thesis. Am J Ophthalmol 2023; 252:225-252. [PMID: 36906092 PMCID: PMC10492898 DOI: 10.1016/j.ajo.2023.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023]
Abstract
PURPOSE To use optical coherence tomography (OCT) to characterize optic nerve head (ONH) peri-neural canal (pNC) scleral bowing (pNC-SB) and pNC choroidal thickness (pNC-CT) in 69 highly myopic and 138 healthy, age-matched, control eyes. DESIGN Cross-sectional, case control study. METHODS Within ONH radial B-scans, Bruch membrane (BM), BM opening (BMO), anterior scleral canal opening (ASCO), and pNC scleral surface were segmented. BMO and ASCO planes and centroids were determined. pNC-SB was characterized within 30° foveal-BMO (FoBMO) sectors by 2 parameters: pNC-SB-scleral slope (pNC-SB-SS), measured within 3 pNC segments (0-300, 300-700, and 700-1000 μm from the ASCO centroid); and pNC-SB-ASCO depth relative to a pNC scleral reference plane (pNC-SB-ASCOD). pNC-CT was calculated as the minimum distance between the scleral surface and BM at 3 pNC locations (300, 700, and 1100 μm from the ASCO). RESULTS pNC-SB increased and pNC-CT decreased with axial length (P < .0133; P < .0001) and age (P < .0211; P < .0004) among all study eyes. pNC-SB was increased (P < .001) and pNC-CT was decreased (P < .0279) in the highly myopic compared to control eyes, and these differences were greatest in the inferior quadrant sectors (P < .0002). Sectoral pNC-SB was not related to sectoral pNC-CT in control eyes, but was inversely related to sectoral pNC-CT (P < .0001) in the highly myopic eyes. CONCLUSIONS Our data suggest that pNC-SB is increased and pNC-CT is decreased in highly myopic eyes and that these phenomena are greatest in the inferior sectors. They support the hypothesis that sectors of maximum pNC-SB may predict sectors of greatest susceptibility to aging and glaucoma in future longitudinal studies of highly myopic eyes. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.
Collapse
Affiliation(s)
- Claude F Burgoyne
- From the Devers Eye Institute Optic Nerve Head Research Laboratory (C.F., J.R., H.Y.), Legacy Research Institute, Portland, Oregon, USA; Devers Eye Institute Discoveries in Sight Research Laboratories (C.F.B., S.G., J.R., B.F., H.Y.), Legacy Research Institute, Portland, Oregon, USA.
| | - Ya Xing Wang
- Beijing Institute of Ophthalmology (Y.X.W.), Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing, China
| | - Jin Wook Jeoung
- Department of Ophthalmology (J.W.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | | | - Stuart Gardiner
- Devers Eye Institute Discoveries in Sight Research Laboratories (C.F.B., S.G., J.R., B.F., H.Y.), Legacy Research Institute, Portland, Oregon, USA
| | - Juan Reynaud
- Devers Eye Institute Discoveries in Sight Research Laboratories (C.F.B., S.G., J.R., B.F., H.Y.), Legacy Research Institute, Portland, Oregon, USA
| | - Brad Fortune
- Devers Eye Institute Discoveries in Sight Research Laboratories (C.F.B., S.G., J.R., B.F., H.Y.), Legacy Research Institute, Portland, Oregon, USA
| | - Michaël J A Girard
- Ophthalmic Engineering & Innovation Laboratory (M.J.A.G.), Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Glen Sharpe
- Department of Ophthalmology and Visual Sciences (G.S., M.N., B.C.C.), Dalhousie University, Halifax, Nova Scotia, Canada
| | - Marcelo Nicolela
- Department of Ophthalmology and Visual Sciences (G.S., M.N., B.C.C.), Dalhousie University, Halifax, Nova Scotia, Canada
| | - Balwantray C Chauhan
- Department of Ophthalmology and Visual Sciences (G.S., M.N., B.C.C.), Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hongli Yang
- Devers Eye Institute Discoveries in Sight Research Laboratories (C.F.B., S.G., J.R., B.F., H.Y.), Legacy Research Institute, Portland, Oregon, USA
| |
Collapse
|
5
|
Li JD, Raynor W, Dhalla AH, Viehland C, Trout R, Toth CA, Vajzovic LM, Izatt JA. Quantitative measurements of intraocular structures and microinjection bleb volumes using intraoperative optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:352-366. [PMID: 36698674 PMCID: PMC9842013 DOI: 10.1364/boe.483278] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Intraoperative optical coherence tomography (OCT) systems provide high-resolution, real-time visualization and/or guidance of microsurgical procedures. While the use of intraoperative OCT in ophthalmology has significantly improved qualitative visualization of surgical procedures inside the eye, new surgical techniques to deliver therapeutics have highlighted the lack of quantitative information available with current-generation intraoperative systems. Indirect viewing systems used for retinal surgeries introduce distortions into the resulting OCT images, making it particularly challenging to make calibrated quantitative measurements. Using an intraoperative OCT system based in part on the Leica Enfocus surgical microscope interface, we have devised novel measurement procedures, which allowed us to build optical and mathematical models to perform validation of quantitative measurements of intraocular structures for intraoperative OCT. These procedures optimize a complete optical model of the sample arm including the OCT scanner, viewing attachments, and the patient's eye, thus obtaining the voxel pitch throughout an OCT volume and performing quantitative measurements of the dimensions of imaged objects within the operative field. We performed initial validation by measuring objects of known size in a controlled eye phantom as well as ex vivo porcine eyes. The technique was then extended to measure other objects and structures in ex vivo porcine eyes and in vivo human eyes.
Collapse
Affiliation(s)
- Jianwei D. Li
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - William Raynor
- Department of Ophthalmology, Duke University Medical Center, 2351 Erwin Road, Durham, NC 27705, USA
| | - Al-Hafeez Dhalla
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Christian Viehland
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Robert Trout
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Cynthia A. Toth
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
- Department of Ophthalmology, Duke University Medical Center, 2351 Erwin Road, Durham, NC 27705, USA
| | - Lejla M. Vajzovic
- Department of Ophthalmology, Duke University Medical Center, 2351 Erwin Road, Durham, NC 27705, USA
| | - Joseph A. Izatt
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
- Department of Ophthalmology, Duke University Medical Center, 2351 Erwin Road, Durham, NC 27705, USA
| |
Collapse
|
6
|
Zhang W, Li C, Gong Y, Liu N, Cao Y, Li Z, Zhang Y. Advanced ultrawide-field optical coherence tomography angiography identifies previously undetectable changes in biomechanics-related parameters in nonpathological myopic fundus. Front Bioeng Biotechnol 2022; 10:920197. [PMID: 36051579 PMCID: PMC9424555 DOI: 10.3389/fbioe.2022.920197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose: To detect previously undetectable changes in vessel density and structural thickness, the two biomechanics-related parameters reflecting hemodynamics and tensile strength, respectively, in the peripheral and central fundi of nonpathological myopic eyes with an advanced ultrawide-field optical coherence tomography angiography (OCTA) system. Methods: A cross-sectional observational clinical study was carried out by recruiting 155 eyes from 79 college students aged 18–28 years. The eyes were stratified into normal, low-myopia, medium-myopia, and high-myopia groups according to diopter. A newly developed OCTA system with scanning dimensions of 24 mm × 20 mm, acquisition speed of 400 kHz, and imaging range of 6 mm was used to examine the vessel densities of superficial vascular complex (SVC), deep vascular complex (DVC), choriocapillary (ChC), and choroidal vessel (ChV) layers, as well as the thicknesses of the inner retina, outer retina, and choroid in the nonpathological myopic eyes. Results: The vessel densities in ChV at the temporal, inferotemporal, inferior, and inferonasal regions in the fundus periphery were significantly reduced in myopic subjects as compared to normal controls (all p < 0.05). The thicknesses of the inner retinal segments in most peripheral regions of the fundus became attenuated along with myopia severity (all p < 0.05). The thicknesses of the outer retinal segments were diminished at the superior and supranasal regions of the peripheral fundi of myopic subjects as compared to normal controls (all p < 0.05). At the central macular region, the decreased vessel densities of SVC and DVC were correlated with the attenuated thicknesses of inner retinal segments, respectively (all p < 0.05). Conclusion: As revealed for the first time by the advanced ultrawide-field OCTA system, the two biomechanics-related parameters that include the densities of the choroidal vessels and thicknesses of the inner retina segments were significantly reduced in the periphery of nonpathological myopic fundi and the reductions were associated with myopia severity. At the central macular region, the newly developed device provides consistent results with the previous findings. Therefore, it is important to use the noninvasive, ultrawide-field OCTA with high resolution for early detection of fundus changes in subjects with nonpathological high myopia. Clinical Trial Registration: clinicaltrials.gov, identifier ChiCTR2100054093.
Collapse
Affiliation(s)
- Weiran Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Chang Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yibo Gong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Nianen Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yunshan Cao
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, China
| | - Zhiqing Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
- *Correspondence: Zhiqing Li, ; Yan Zhang,
| | - Yan Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
- *Correspondence: Zhiqing Li, ; Yan Zhang,
| |
Collapse
|
7
|
Li Y, Zheng F, Foo LL, Wong QY, Ting D, Hoang QV, Chong R, Ang M, Wong CW. Advances in OCT Imaging in Myopia and Pathologic Myopia. Diagnostics (Basel) 2022; 12:diagnostics12061418. [PMID: 35741230 PMCID: PMC9221645 DOI: 10.3390/diagnostics12061418] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Advances in imaging with optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA) technology, including the development of swept source OCT/OCTA, widefield or ultra-widefield systems, have greatly improved the understanding, diagnosis, and treatment of myopia and myopia-related complications. Anterior segment OCT is useful for imaging the anterior segment of myopes, providing the basis for implantable collamer lens optimization, or detecting intraocular lens decentration in high myopic patients. OCT has enhanced imaging of vitreous properties, and measurement of choroidal thickness in myopic eyes. Widefield OCT systems have greatly improved the visualization of peripheral retinal lesions and have enabled the evaluation of wide staphyloma and ocular curvature. Based on OCT imaging, a new classification system and guidelines for the management of myopic traction maculopathy have been proposed; different dome-shaped macula morphologies have been described; and myopia-related abnormalities in the optic nerve and peripapillary region have been demonstrated. OCTA can quantitatively evaluate the retinal microvasculature and choriocapillaris, which is useful for the early detection of myopic choroidal neovascularization and the evaluation of anti-vascular endothelial growth factor therapy in these patients. In addition, the application of artificial intelligence in OCT/OCTA imaging in myopia has achieved promising results.
Collapse
Affiliation(s)
- Yong Li
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore 169856, Singapore; (Y.L.); (F.Z.); (L.L.F.); (Q.Y.W.); (D.T.); (Q.V.H.); (R.C.); (M.A.)
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Feihui Zheng
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore 169856, Singapore; (Y.L.); (F.Z.); (L.L.F.); (Q.Y.W.); (D.T.); (Q.V.H.); (R.C.); (M.A.)
| | - Li Lian Foo
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore 169856, Singapore; (Y.L.); (F.Z.); (L.L.F.); (Q.Y.W.); (D.T.); (Q.V.H.); (R.C.); (M.A.)
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Qiu Ying Wong
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore 169856, Singapore; (Y.L.); (F.Z.); (L.L.F.); (Q.Y.W.); (D.T.); (Q.V.H.); (R.C.); (M.A.)
| | - Daniel Ting
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore 169856, Singapore; (Y.L.); (F.Z.); (L.L.F.); (Q.Y.W.); (D.T.); (Q.V.H.); (R.C.); (M.A.)
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Quan V. Hoang
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore 169856, Singapore; (Y.L.); (F.Z.); (L.L.F.); (Q.Y.W.); (D.T.); (Q.V.H.); (R.C.); (M.A.)
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Department of Ophthalmology, Columbia University, New York, NY 10027, USA
| | - Rachel Chong
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore 169856, Singapore; (Y.L.); (F.Z.); (L.L.F.); (Q.Y.W.); (D.T.); (Q.V.H.); (R.C.); (M.A.)
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Marcus Ang
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore 169856, Singapore; (Y.L.); (F.Z.); (L.L.F.); (Q.Y.W.); (D.T.); (Q.V.H.); (R.C.); (M.A.)
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Chee Wai Wong
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore 169856, Singapore; (Y.L.); (F.Z.); (L.L.F.); (Q.Y.W.); (D.T.); (Q.V.H.); (R.C.); (M.A.)
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Correspondence:
| |
Collapse
|
8
|
Li Y, Foo LL, Wong CW, Li J, Hoang QV, Schmetterer L, Ting DSW, Ang M. Pathologic myopia: advances in imaging and the potential role of artificial intelligence. Br J Ophthalmol 2022; 107:600-606. [PMID: 35288438 DOI: 10.1136/bjophthalmol-2021-320926] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/17/2022] [Indexed: 11/04/2022]
Abstract
Pathologic myopia is a severe form of myopia that can lead to permanent visual impairment. The recent global increase in the prevalence of myopia has been projected to lead to a higher incidence of pathologic myopia in the future. Thus, imaging myopic eyes to detect early pathological changes, or predict myopia progression to allow for early intervention, has become a key priority. Recent advances in optical coherence tomography (OCT) have contributed to the new grading system for myopic maculopathy and myopic traction maculopathy, which may improve phenotyping and thus, clinical management. Widefield fundus and OCT imaging has improved the detection of posterior staphyloma. Non-invasive OCT angiography has enabled depth-resolved imaging for myopic choroidal neovascularisation. Artificial intelligence (AI) has shown great performance in detecting pathologic myopia and the identification of myopia-associated complications. These advances in imaging with adjunctive AI analysis may lead to improvements in monitoring disease progression or guiding treatments. In this review, we provide an update on the classification of pathologic myopia, how imaging has improved clinical evaluation and management of myopia-associated complications, and the recent development of AI algorithms to aid the detection and classification of pathologic myopia.
Collapse
Affiliation(s)
- Yong Li
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.,Ophthalmology and Visual Sciences Department, Duke-NUS Medical School, Singapore
| | - Li-Lian Foo
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.,Ophthalmology and Visual Sciences Department, Duke-NUS Medical School, Singapore
| | - Chee Wai Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.,Ophthalmology and Visual Sciences Department, Duke-NUS Medical School, Singapore
| | - Jonathan Li
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Quan V Hoang
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.,Ophthalmology and Visual Sciences Department, Duke-NUS Medical School, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Ophthalmology, Columbia University, New York City, New York, USA
| | - Leopold Schmetterer
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.,Ophthalmology and Visual Sciences Department, Duke-NUS Medical School, Singapore.,SERI-NTU Advanced Ocular Engineering (STANCE), Singapore.,School of Chemical and Biological Engineering, Nanyang Technological University, Singapore.,Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria.,Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria.,Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Daniel S W Ting
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.,Ophthalmology and Visual Sciences Department, Duke-NUS Medical School, Singapore
| | - Marcus Ang
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore .,Ophthalmology and Visual Sciences Department, Duke-NUS Medical School, Singapore
| |
Collapse
|
9
|
Grytz R, El Hamdaoui M, Fuchs PA, Fazio MA, McNabb RP, Kuo AN, Girkin CA, Samuels BC. Nonlinear distortion correction for posterior eye segment optical coherence tomography with application to tree shrews. BIOMEDICAL OPTICS EXPRESS 2022; 13:1070-1086. [PMID: 35284162 PMCID: PMC8884212 DOI: 10.1364/boe.447595] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
We propose an empirical distortion correction approach for optical coherence tomography (OCT) devices that use a fan-scanning pattern to image the posterior eye segment. Two types of reference markers were used to empirically estimate the distortion correction approach in tree shrew eyes: retinal curvature from MRI images and implanted glass beads of known diameter. Performance was tested by correcting distorted images of the optic nerve head. In small animal eyes, our purposed method effectively reduced nonlinear distortions compared to a linear scaling method. No commercial posterior segment OCT provides anatomically correct images, which may bias the 3D interpretation of these scans. Our method can effectively reduce such bias.
Collapse
Affiliation(s)
- Rafael Grytz
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, AL, USA
| | - Mustapha El Hamdaoui
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, AL, USA
| | - Preston A. Fuchs
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, AL, USA
| | - Massimo A. Fazio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, AL, USA
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL, USA
- Viterbi Family Department of Ophthalmology, UC San Diego, La Jolla, CA, USA
| | - Ryan P. McNabb
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | - Anthony N. Kuo
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | - Christopher A. Girkin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, AL, USA
| | - Brian C. Samuels
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, AL, USA
| |
Collapse
|