1
|
Cheng G, Kuan CY, Lou KW, Ho Y. Light-Responsive Materials in Droplet Manipulation for Biochemical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2313935. [PMID: 38379512 PMCID: PMC11733724 DOI: 10.1002/adma.202313935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/31/2024] [Indexed: 02/22/2024]
Abstract
Miniaturized droplets, characterized by well-controlled microenvironments and capability for parallel processing, have significantly advanced the studies on enzymatic evolution, molecular diagnostics, and single-cell analysis. However, manipulation of small-sized droplets, including moving, merging, and trapping of the targeted droplets for complex biochemical assays and subsequent analysis, is not trivial and remains technically demanding. Among various techniques, light-driven methods stand out as a promising candidate for droplet manipulation in a facile and flexible manner, given the features of contactless interaction, high spatiotemporal resolution, and biocompatibility. This review therefore compiles an in-depth discussion of the governing mechanisms underpinning light-driven droplet manipulation. Besides, light-responsive materials, representing the core of light-matter interaction and the key character converting light into different forms of energy, are particularly assessed in this review. Recent advancements in light-responsive materials and the most notable applications are comprehensively archived and evaluated. Continuous innovations and rational engineering of light-responsive materials are expected to propel the development of light-driven droplet manipulation, equip droplets with enhanced functionality, and broaden the applications of droplets for biochemical studies and routine biochemical investigations.
Collapse
Affiliation(s)
- Guangyao Cheng
- Department of Biomedical EngineeringThe Chinese University of Hong KongHong Kong SAR999077China
| | - Chit Yau Kuan
- Department of Biomedical EngineeringThe Chinese University of Hong KongHong Kong SAR999077China
| | - Kuan Wen Lou
- State Key Laboratory of Marine PollutionCity University of Hong KongHong Kong SAR999077China
| | - Yi‐Ping Ho
- Department of Biomedical EngineeringThe Chinese University of Hong KongHong Kong SAR999077China
- State Key Laboratory of Marine PollutionCity University of Hong KongHong Kong SAR999077China
- Centre for Novel BiomaterialsThe Chinese University of Hong KongHong Kong SAR999077China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and GeneticsThe Chinese University of Hong KongHong Kong SAR999077China
- The Ministry of Education Key Laboratory of Regeneration MedicineThe Chinese University of Hong KongHong Kong SAR999077China
| |
Collapse
|
2
|
Zamboni R, Gauthier-Manuel L, Zaltron A, Lucchetti L, Chauvet M, Sada C. Opto-microfluidic coupling between optical waveguides and tilted microchannels in lithium niobate. OPTICS EXPRESS 2023; 31:28423-28436. [PMID: 37710896 DOI: 10.1364/oe.495406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/05/2023] [Indexed: 09/16/2023]
Abstract
This work presents a reconfigurable opto-microfluidic coupling between optical waveguides and tilted microfluidic channels in monolithic lithium niobate crystal. The light path connecting two waveguide arrays located on opposite sides of a microfluidic channel depends on the refractive index between the liquid phase and the hosting crystal. As a result, the optical properties of the flowing fluid, which is pumped into the microfluidic channel on demand, can be exploited to control the light pathways inside the optofluidic device. Proof-of-concept applications are herein presented, including microfluidic optical waveguide switching, optical refractive index sensing, and wavelength demultiplexing.
Collapse
|
3
|
Gao Z, Yan J, Shi L, Liu X, Wang M, Li C, Huai Z, Wang C, Wang X, Zhang L, Yan W. Efficient Surfactant-Mediated Photovoltaic Manipulation of fL-Scale Aqueous Microdroplets for Diverse Optofluidic Applications on LiNbO 3 Platform. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2304081. [PMID: 37526054 DOI: 10.1002/adma.202304081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/16/2023] [Indexed: 08/02/2023]
Abstract
The electrodeless biocompatible manipulation of femtoliter-scale aqueous microdroplets remains challenging. The appropriate isolation of electrostatic charges from femtoliter-scale aqueous microdroplets is crucial for electrodeless optoelectronic manipulation based on space-charge-density modulation. Here, surfactant-mediated photovoltaic manipulation is proposed, where the surfactant layers self-assembled at the water-oil and oil-Lithium niobate interfaces are employed to isolate photovoltaic charges. The reduced electrostatic attenuation, remarkable hydrophobicity, and strong electrical breakdown suppression of the surfactant layers enable the stable and swift manipulation of femtoliter-scale aqueous microdroplets using µW-level laser in oil media. By virtue of the surfactant-mediated photovoltaic manipulation, a controllable merging/touching/detaching switch of aqueous microdroplets by adjusting the laser illumination intensity and position is realized and the cascading biochemical operations and microreactions of aqueous microdroplets and microdroplet strings are demonstrated. To demonstrate its potential in photonic Micro-Electro-Mechanical-System assemblies, the end coupling of a focused-laser-beam into a ZnO microrod leveraging the refraction effect occurring at the water/oil interface is demonstrated. Moreover, because of the selective permeability of the droplet-interface-bilayer developed between the touching microdroplets, in situ adjustment of the size of the microdroplets and the fluorescent solute contained in the microdroplets are achieved, aiming at constructing multicomponent fluorescent microdroplets with tunable whispering-gallery-mode characteristics.
Collapse
Affiliation(s)
- Zuoxuan Gao
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
- Hebei Engineering Laboratory of Photoelectronic Functional Crystals School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Jinghui Yan
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
- Hebei Engineering Laboratory of Photoelectronic Functional Crystals School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Lihong Shi
- Department of Physics, Tianjin Chengjian University, Tianjin, 300384, China
| | - Xiaohu Liu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
- Hebei Engineering Laboratory of Photoelectronic Functional Crystals School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Mengtong Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
- Hebei Engineering Laboratory of Photoelectronic Functional Crystals School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Chenyu Li
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
- Hebei Engineering Laboratory of Photoelectronic Functional Crystals School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Zechao Huai
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
- Hebei Engineering Laboratory of Photoelectronic Functional Crystals School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Cheng Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
- Hebei Engineering Laboratory of Photoelectronic Functional Crystals School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Xuan Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
- Hebei Engineering Laboratory of Photoelectronic Functional Crystals School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Lina Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
- Hebei Engineering Laboratory of Photoelectronic Functional Crystals School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Wenbo Yan
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
- Hebei Engineering Laboratory of Photoelectronic Functional Crystals School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| |
Collapse
|
4
|
Gao B, Cao X, Wang C, Gao Z, Liu X, Wang M, Yan J, Huai Z, Shi L, Yan W. Dielectrophoresis-electrophoresis transition during the photovoltaic manipulation of water microdroplets on LiNbO 3:Fe platform. OPTICS EXPRESS 2023; 31:16495-16507. [PMID: 37157727 DOI: 10.1364/oe.484006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The abrupt behaviors of microdroplets during the LN-based photovoltaic manipulation may cause the transient instability and even failure of the microfluidic manipulation. In this paper, we perform a systematical analysis on the responses of water microdroplets to laser illumination on both naked and PTFE-coated LN:Fe surface, and find that the abrupt repulsive behaviors of the microdroplets are due to the electrostatic transition from the dielectrophoresis (DEP) to electrophoresis (EP) mechanism. Charging of the water microdroplets through the Rayleigh jetting from electrified water/oil interface is suggested as the cause of the DEP-EP transition. Fitting the kinetic data of the microdroplets to the models describing the motion of the microdroplets under the photovoltaic field yields the charging amount depending on the substrate configuration (∼1.7 × 10-11 and 3.9 × 10-12 C on the naked and PTFE-coated LN:Fe substrates), and also reveals the dominance of the EP mechanism in the co-existence of the DEP and EP mechanisms. The outcome of this paper will be quite important to the practicalization of the photovoltaic manipulation in LN-based optofluidic chips.
Collapse
|
5
|
Elvira I, Puerto A, Mínguez-Vega G, Rodríguez-Palomo A, Gómez-Tornero A, García-Cabañes A, Carrascosa M. Micro-patterns of gold nanoparticles assembled by photovoltaic optoelectronic tweezers: application to plasmonic fluorescence enhancement. OPTICS EXPRESS 2022; 30:41541-41553. [PMID: 36366629 DOI: 10.1364/oe.471928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Noble metal nanostructures are well-known for their ability to increase the efficiency of different optical or physical phenomena due to their plasmonic behavior. This work presents a simple strategy to obtain Au plasmonic patterns by optically induced nanoparticle assembly and its application as fluorescence enhancement platforms. This strategy is based on the so-called photovoltaic optoelectronic tweezers (PVOT) being the first time they are used for fabricating Au periodic micro-patterns. Fringe patterns with a sub-structure of aggregates, assembled from individual spherical nanoparticles of 3.5 or 170 nm diameters, are successfully obtained. The spatial distribution of the aggregates is controlled with micrometric accuracy and the patterns can be arranged over large-scale active areas (tens of mm2). The outcome for the ultra-small (3.5 nm) particles is particularly relevant because this diameter is the smallest one manipulated by PVOT so far. Testing experiments of plasmonic fluorescence enhancement show that the 170-nm patterns present a much better plasmonic behavior. For the 170-nm platform they reveal a 10-fold enhancement factor in the fluorescence of Rhodamine-B dye molecules and a 3-fold one for tagged DNA biomolecules. Hence, the results suggest that these latter plasmonic platforms are good candidates for efficient bio-imaging and biosensing techniques, among other applications.
Collapse
|