1
|
Ma H, Yu Y, Zhu Y, Wu H, Qiu H, Gu Y, Chen Q, Zuo C. Monitoring of microvascular calcification by time-resolved photoacoustic microscopy. PHOTOACOUSTICS 2025; 41:100664. [PMID: 39654983 PMCID: PMC11626619 DOI: 10.1016/j.pacs.2024.100664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024]
Abstract
Monitoring of microvascular calcification (MC) is essential for the understanding of pathophysiological processes and the characterization of certain physiological states such as drug abuse, metabolic abnormality, and chronic nephrosis. In this work, we develop a novel and effective time-resolved photoacoustic microscopy (TR-PAM) technology, which can observe the obvious microvascular bio-elastic change in the development process of the MC owing to the calcium deposition along vascular walls.The feasibility of the TR-PAM imaging was validated using a group of agar phantoms and ex vivo tissues. Furthermore, MC pathological animal models were constructed and imaged in situ and in vivo by the TR-PAM to demonstrate its capability for the bio-mechanical monitoring and characterization of MC, and experimental results were consistent with the pathological knowledge. The feasibility study of monitoring MC by the TR-PAM proves that this technique has potential to be developed as a superficial microvascular bio-mechanical assessment method to supplement current clinical strategy for prediction and monitoring of some diseases.
Collapse
Affiliation(s)
- Haigang Ma
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
- Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu 210019, China
- Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu 210094, China
| | - Yinshi Yu
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
- Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu 210019, China
- Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu 210094, China
| | - Yahui Zhu
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
- Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu 210019, China
- Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu 210094, China
| | - Hongjun Wu
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
- Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu 210019, China
- Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu 210094, China
| | - Haixia Qiu
- Department of Laser medicine, the First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Ying Gu
- Department of Laser medicine, the First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Qian Chen
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
- Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu 210094, China
| | - Chao Zuo
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
- Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu 210019, China
- Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu 210094, China
| |
Collapse
|
2
|
Tian R, Wang Q, Li S, Nong X. Non-invasive efficacy assessment of pulsed dye laser and photodynamic therapy for port-wine stain. Indian J Dermatol Venereol Leprol 2024; 90:615-622. [PMID: 38841964 DOI: 10.25259/ijdvl_985_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/28/2023] [Indexed: 06/07/2024]
Abstract
Port wine stain (PWS) is a congenital vascular malformation that commonly occurs on the face and neck. Currently, the main treatments for port wine stain are pulsed dye laser (PDL) and photodynamic therapy (PDT). However, the efficacy evaluation of PWS mostly relies on the subjective judgement of clinicians, and it is difficult to accurately respond to many small changes after treatment. Therefore, some non-invasive and efficient efficacy assessment methods are also needed. With the continuous development of technology, there are currently many visualisation instruments to evaluate PWS, including dermoscopy, VISIA-CR™ system, reflectance confocal microscopy (RCM), high-frequency ultrasound (HFUS), optical coherence tomography (OCT), Photoacoustic imaging (PAI), laser speckle imaging (LSI) and laser Doppler imaging (LDI). Among them, there are simple and low-cost technologies such as dermoscopy and the VISIA-CR™ system, but they may not be able to observe the deeper structures of PWS. At this time, combining techniques such as HFUS and OCT to increase penetration depth is crucial to evaluate PWS. In the future, the combination of these different technologies could help overcome the limitations of a single technology. This article provides a systematic overview of non-invasive methods for evaluating treatment efficacy in port wine stains and summarises their advantages and disadvantages.
Collapse
Affiliation(s)
- Rongqian Tian
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qin Wang
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Sijin Li
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiang Nong
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
3
|
Wang Z, Yang F, Zhang W, Xiong K, Yang S. Towards in vivo photoacoustic human imaging: Shining a new light on clinical diagnostics. FUNDAMENTAL RESEARCH 2024; 4:1314-1330. [PMID: 39431136 PMCID: PMC11489505 DOI: 10.1016/j.fmre.2023.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/14/2022] [Accepted: 01/12/2023] [Indexed: 02/16/2023] Open
Abstract
Multiscale visualization of human anatomical structures is revolutionizing clinical diagnosis and treatment. As one of the most promising clinical diagnostic techniques, photoacoustic imaging (PAI), or optoacoustic imaging, bridges the spatial-resolution gap between pure optical and ultrasonic imaging techniques, by the modes of optical illumination and acoustic detection. PAI can non-invasively capture multiple optical contrasts from the endogenous agents such as oxygenated/deoxygenated hemoglobin, lipid and melanin or a variety of exogenous specific biomarkers to reveal anatomy, function, and molecular for biological tissues in vivo, showing significant potential in clinical diagnostics. In 2001, the worldwide first clinical prototype of the photoacoustic system was used to screen breast cancer in vivo, which opened the prelude to photoacoustic clinical diagnostics. Over the past two decades, PAI has achieved monumental discoveries and applications in human imaging. Progress towards preclinical/clinical applications includes breast, skin, lymphatics, bowel, thyroid, ovarian, prostate, and brain imaging, etc., and there is no doubt that PAI is opening new avenues to realize early diagnosis and precise treatment of human diseases. In this review, the breakthrough researches and key applications of photoacoustic human imaging in vivo are emphatically summarized, which demonstrates the technical superiorities and emerging applications of photoacoustic human imaging in clinical diagnostics, providing clinical translational orientations for the photoacoustic community and clinicians. The perspectives on potential improvements of photoacoustic human imaging are finally highlighted.
Collapse
Affiliation(s)
- Zhiyang Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
| | - Fei Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
| | - Wuyu Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
| | - Kedi Xiong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
| | - Sihua Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
4
|
Nemirova S, Orlova A, Kurnikov A, Litvinova Y, Kazakov V, Ayvazyan I, Liu YH, Razansky D, Subochev P. Scanning optoacoustic angiography for assessing structural and functional alterations in superficial vasculature of patients with post-thrombotic syndrome: A pilot study. PHOTOACOUSTICS 2024; 38:100616. [PMID: 38770433 PMCID: PMC11103408 DOI: 10.1016/j.pacs.2024.100616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/21/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024]
Abstract
This study highlights the potential of scanning optoacoustic angiography (OA) in identifying alterations of superficial vasculature in patients with post-thrombotic syndrome (PTS) of the foot, a venous stress disorder associated with significant morbidity developing from long-term effects of deep venous thrombosis. The traditional angiography methods available in the clinics are not capable of reliably assessing the state of peripheral veins that provide blood outflow from the skin, a key hallmark of personalized risks of PTS formation after venous thrombosis. Our findings indicate that OA can detect an increase in blood volume, diameter, and tortuosity of superficial blood vessels. The inability to spatially separate vascular plexuses of the dermis and subcutaneous adipose tissue serves as a crucial criterion for distinguishing PTS from normal vasculature. Furthermore, our study demonstrates the ability of scanning optoacoustic angiography to detect blood filling decrease in an elevated limb position versus increase in a lowered position.
Collapse
Affiliation(s)
- Svetlana Nemirova
- Privolzhsky Research Medical University, 10/1 Minin & Pozharsky sq., Nizhny Novgorod 603950, Russia
- A.V. Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Anna Orlova
- A.V. Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Alexey Kurnikov
- A.V. Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Yulia Litvinova
- A.V. Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Viacheslav Kazakov
- A.V. Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Irina Ayvazyan
- A.V. Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Yu-Hang Liu
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering and, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Wolfgang-Pauli-Strasse 27, Zurich 8093, Switzerland
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering and, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Wolfgang-Pauli-Strasse 27, Zurich 8093, Switzerland
| | - Pavel Subochev
- A.V. Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| |
Collapse
|
5
|
Miao X, Ma R, Li J, You W, He K, Meng F, He F, Li Z, Chen X, Lin H, Zhang J, Wang X. Dynamic characterization of vascular response and treatment in oral traumatic ulcer in mice via photoacoustic imaging. Quant Imaging Med Surg 2024; 14:4333-4347. [PMID: 39022262 PMCID: PMC11250348 DOI: 10.21037/qims-24-123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/26/2024] [Indexed: 07/20/2024]
Abstract
Background Dynamic surveillance of vasculature is essential for evaluating the healing of oral ulcer. Existing techniques used in vascular imaging face limitations, such as inadequate spatial resolution, restricted diagnostic depth, and the necessity of exogenous contrast agents. Therefore, this study aimed to use robust photoacoustic imaging (PAI) for the dynamic monitoring of vascular response during healing and the associated treatment process of oral ulcer. Methods Kunming mice (male, 8 weeks old, 31-41 g) were treated with 50% acetic acid for 90 s on the tongue mucosa for induction of oral traumatic ulcer. Mice were randomly divided into three groups (n=12): the control, compound chamomile and lidocaine hydrochloride gel (CCLH), and phycocyanin (PC) groups. PAI was then conducted on days 0, 2, 3, 5, and 7 to obtain vessel parameters of the ulcer area, including vessel intensity, density, mean diameter, maximum diameter, and curvature. Immunohistochemical and hematoxylin and eosin (HE) staining were performed on days 3 and 7 to assess microvessel density and inflammation score. The ulcer healing rate and body weight changes were evaluated for clinical observation. Results Beginning on the second day after ulcer induction, there was a progressive increase over time in blood intensity and vessel parameters, including vascular density and diameter. On day 7, the CCLH and PC groups demonstrated significantly higher measures than did the control group in terms of blood intensity (P<0.05 and P<0.01), vascular density (both P values <0.05), mean diameter (both P values <0.01), and maximum diameter (P<0.01 and P<0.05). Vessel curvature in the two treatment groups exhibited no significant differences compared to that in the control group (both P values >0.05). The effects of vascular morphological changes were further supported by the histological and clinical outcomes. On day 7, compared to that of the control group, the level of microvessel density was significantly higher in both the CCLH (P<0.01) and PC (P<0.05) groups. The histopathological score in PC group was significantly lower than that of the control group on day 7 (P<0.05). Additionally, compared to that of the control group, the healing rates of the CCLH (P<0.01) and PC groups (P<0.05) were superior on day 7. On day 3, the control group showed more weight loss than did the CCLH (P<0.05) and PC (P<0.01) groups. Conclusions These findings indicate that PAI is a valuable strategy for the dynamic and quantitative analysis of vascular alterations in oral traumatic ulcers and support its prospective application in improving clinical treatment.
Collapse
Affiliation(s)
- Xiaoyu Miao
- Department of Oral Mucosal Diseases, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Rui Ma
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Jiayi Li
- Department of Oral Mucosal Diseases, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Wenran You
- Department of Oral Mucosal Diseases, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Kaini He
- Department of Oral Mucosal Diseases, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Fan Meng
- Qingyuan People’s Hospital, the Sixth Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Fengbing He
- Qingyuan People’s Hospital, the Sixth Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Zicong Li
- Department of Oral Mucosal Diseases, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xi Chen
- Department of Oral Mucosal Diseases, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Hui Lin
- Department of Oral Mucosal Diseases, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jian Zhang
- Qingyuan People’s Hospital, the Sixth Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Xinhong Wang
- Department of Oral Mucosal Diseases, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Yu Y, Feng T, Qiu H, Gu Y, Chen Q, Zuo C, Ma H. Simultaneous photoacoustic and ultrasound imaging: A review. ULTRASONICS 2024; 139:107277. [PMID: 38460216 DOI: 10.1016/j.ultras.2024.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/09/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
Photoacoustic imaging (PAI) is an emerging biomedical imaging technique that combines the advantages of optical and ultrasound imaging, enabling the generation of images with both optical resolution and acoustic penetration depth. By leveraging similar signal acquisition and processing methods, the integration of photoacoustic and ultrasound imaging has introduced a novel hybrid imaging modality suitable for clinical applications. Photoacoustic-ultrasound imaging allows for non-invasive, high-resolution, and deep-penetrating imaging, providing a wealth of image information. In recent years, with the deepening research and the expanding biomedical application scenarios of photoacoustic-ultrasound bimodal systems, the immense potential of photoacoustic-ultrasound bimodal imaging in basic research and clinical applications has been demonstrated, with some research achievements already commercialized. In this review, we introduce the principles, technical advantages, and biomedical applications of photoacoustic-ultrasound bimodal imaging techniques, specifically focusing on tomographic, microscopic, and endoscopic imaging modalities. Furthermore, we discuss the future directions of photoacoustic-ultrasound bimodal imaging technology.
Collapse
Affiliation(s)
- Yinshi Yu
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China
| | - Ting Feng
- Academy for Engineering & Technology, Fudan University, Shanghai 200433,China.
| | - Haixia Qiu
- First Medical Center of PLA General Hospital, Beijing, China
| | - Ying Gu
- First Medical Center of PLA General Hospital, Beijing, China
| | - Qian Chen
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China
| | - Chao Zuo
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China.
| | - Haigang Ma
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China.
| |
Collapse
|
7
|
Kukk AF, Scheling F, Panzer R, Emmert S, Roth B. Non-invasive 3D imaging of human melanocytic lesions by combined ultrasound and photoacoustic tomography: a pilot study. Sci Rep 2024; 14:2768. [PMID: 38307985 PMCID: PMC10837440 DOI: 10.1038/s41598-024-53220-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/30/2024] [Indexed: 02/04/2024] Open
Abstract
The accurate determination of the size and depth of infiltration is critical to the treatment and excision of melanoma and other skin cancers. However, current techniques, such as skin biopsy and histological examination, pose invasiveness, time-consumption, and have limitations in measuring at the deepest level. Non-invasive imaging techniques like dermoscopy and confocal microscopy also present limitations in accurately capturing contrast and depth information for various skin types and lesion locations. Thus, there is a pressing need for non-invasive devices capable of obtaining high-resolution 3D images of skin lesions. In this study, we introduce a novel device that combines 18 MHz ultrasound and photoacoustic tomography into a single unit, enabling the acquisition of colocalized 3D images of skin lesions. We performed in vivo measurements on 25 suspicious human skin nevi that were promptly excised following measurements. The combined ultrasound/photoacoustic tomography imaging technique exhibited a strong correlation with histological Breslow thickness between 0.2 and 3 mm, achieving a coefficient of determination (R[Formula: see text]) of 0.93, which is superior to the coefficients from the individual modalities. The results procured in our study underscore the potential of combined ultrasound and photoacoustic tomography as a promising non-invasive 3D imaging approach for evaluating human nevi and other skin lesions. Furthermore, the system allows for integration of other optical modalities such as optical coherence tomography, microscopy, or Raman spectroscopy in future applications.
Collapse
Affiliation(s)
- Anatoly Fedorov Kukk
- Hannover Centre for Optical Technologies, Leibniz University of Hannover, Nienburger Straße 17, 30167, Hannover, Germany.
| | - Felix Scheling
- Hannover Centre for Optical Technologies, Leibniz University of Hannover, Nienburger Straße 17, 30167, Hannover, Germany
| | - Rüdiger Panzer
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Strempelstraße 13, 18057, Rostock, Germany
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Strempelstraße 13, 18057, Rostock, Germany
| | - Bernhard Roth
- Hannover Centre for Optical Technologies, Leibniz University of Hannover, Nienburger Straße 17, 30167, Hannover, Germany
- Cluster of Excellence PhoenixD (Photonics, Optics and Engineering - Innovation Across Disciplines), Welfengarten 1a, 30167, Hannover, Germany
| |
Collapse
|
8
|
Gao Y, Feng T, Qiu H, Gu Y, Chen Q, Zuo C, Ma H. 4D spectral-spatial computational photoacoustic dermoscopy. PHOTOACOUSTICS 2023; 34:100572. [PMID: 38058749 PMCID: PMC10696115 DOI: 10.1016/j.pacs.2023.100572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/16/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023]
Abstract
Photoacoustic dermoscopy (PAD) is an emerging non-invasive imaging technology aids in the diagnosis of dermatological conditions by obtaining optical absorption information of skin tissues. Despite advances in PAD, it remains unclear how to obtain quantitative accuracy of the reconstructed PAD images according to the optical and acoustic properties of multilayered skin, the wavelength and distribution of excitation light, and the detection performance of ultrasound transducers. In this work, a computing method of four-dimensional (4D) spectral-spatial imaging for PAD is developed to enable quantitative analysis and optimization of structural and functional imaging of skin. This method takes the optical and acoustic properties of heterogeneous skin tissues into account, which can be used to correct the optical field of excitation light, detectable ultrasonic field, and provide accurate single-spectrum analysis or multi-spectral imaging solutions of PAD for multilayered skin tissues. A series of experiments were performed, and simulation datasets obtained from the computational model were used to train neural networks to further improve the imaging quality of the PAD system. All the results demonstrated the method could contribute to the development and optimization of clinical PADs by datasets with multiple variable parameters, and provide clinical predictability of photoacoustic (PA) data for human skin.
Collapse
Affiliation(s)
- Yang Gao
- Nanjing University of Science and Technology, School of Electronic and Optical Engineering, Smart Computational Imaging Laboratory (SCILab), Nanjing 210094, China
- Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing 210094, China
- Nanjing University of Science and Technology, School of Electronic and Optical Engineering, Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing 210094, China
| | - Ting Feng
- Fudan University, Academy for Engineering and Technology, Shanghai 200433, China
| | - Haixia Qiu
- First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Ying Gu
- First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Qian Chen
- Nanjing University of Science and Technology, School of Electronic and Optical Engineering, Smart Computational Imaging Laboratory (SCILab), Nanjing 210094, China
- Nanjing University of Science and Technology, School of Electronic and Optical Engineering, Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing 210094, China
| | - Chao Zuo
- Nanjing University of Science and Technology, School of Electronic and Optical Engineering, Smart Computational Imaging Laboratory (SCILab), Nanjing 210094, China
- Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing 210094, China
- Nanjing University of Science and Technology, School of Electronic and Optical Engineering, Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing 210094, China
| | - Haigang Ma
- Nanjing University of Science and Technology, School of Electronic and Optical Engineering, Smart Computational Imaging Laboratory (SCILab), Nanjing 210094, China
- Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing 210094, China
- Nanjing University of Science and Technology, School of Electronic and Optical Engineering, Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing 210094, China
| |
Collapse
|
9
|
Sun T, Lv J, Zhao X, Li W, Zhang Z, Nie L. In vivo liver function reserve assessments in alcoholic liver disease by scalable photoacoustic imaging. PHOTOACOUSTICS 2023; 34:100569. [PMID: 38046637 PMCID: PMC10690638 DOI: 10.1016/j.pacs.2023.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/09/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023]
Abstract
We present a rapid and high-resolution photoacoustic imaging method for evaluating the liver function reserve (LFR). To validate its accuracy, we establish alcoholic liver disease (ALD) models and employ dual-wavelength spectral unmixing to assess oxygen metabolism. An empirical mathematical model fits the photoacoustic signals, obtaining liver metabolism curve and LFR parameters. Liver oxygen metabolism significantly drops in ALD with the emergence of abnormal hepatic lobular structure. ICG half-life remarkably extends from 241 to 568 s in ALD. A significant decline in LFR occurs in terminal region compared to central region, indicated by a 106.9 s delay in ICG half-life, likely due to hepatic artery and vein damage causing hypoxia and inadequate nutrition. Reduced glutathione repairs LFR with a 43% improvement by reducing alcohol-induced oxidative damage. Scalable photoacoustic imaging shows immense potential for assessing LFR in alcoholic-related diseases, providing assistance to early detection and management of liver disease.
Collapse
Affiliation(s)
- Tong Sun
- Medical Research Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
| | - Jing Lv
- Guangdong Cardiovascular Institute, Guangzhou 510080, China
- Medical Research Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China
| | - Xingyang Zhao
- Medical Research Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China
| | - Wenya Li
- Medical Research Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China
| | - Zhenhui Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
| | - Liming Nie
- Medical Research Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China
| |
Collapse
|
10
|
Sun W, Cai B, Rao J, Zhou F. Characterization of cerebrovascular changes in mice treated with alcohol by photoacoustic imaging. JOURNAL OF BIOPHOTONICS 2023:e202300038. [PMID: 37078184 DOI: 10.1002/jbio.202300038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Alcohol has complex effects on cerebrovascular health. Monitoring the pathology of alcohol induced cerebrovascular changes in vivo is essential for understanding the mechanism and developing potential treatment strategies. Here, photoacoustic imaging was employed to examine cerebrovascular changes in mice under the treatment of alcohol at different doses. By analyzing the association of cerebrovascular structure, hemodynamics, neuronal function and corresponding behavior, we found that alcohol affected brain function and behavior in a dose-dependent manner. Low dose of alcohol increased cerebrovascular blood volume and activated neurons, without addictive behaviors and cerebrovascular structure changes. With the dose increased, cerebrovascular blood volume gradually decreased, triggering obviously progressive effects on the immune microenvironment, cerebrovascular structure and addictive behavior. These findings will provide further insights into the characterization of the biphasic effects of alcohol.
Collapse
Affiliation(s)
- Weikang Sun
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Bingdong Cai
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Jie Rao
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Feifan Zhou
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
| |
Collapse
|
11
|
Shan T, Yang H, Jiang S, Jiang H. Monitoring neonatal brain hemorrhage progression by photoacoustic tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:118-127. [PMID: 36698652 PMCID: PMC9841991 DOI: 10.1364/boe.469324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/06/2022] [Accepted: 12/01/2022] [Indexed: 05/11/2023]
Abstract
Neonatal brain hemorrhage (NBH) is the most common neurological disorder in neonates and its clinical interventions are very limited. Understanding the pathology of NBH by non-invasive in-vivo characterization of standardized animal models is essential for developing potential treatments. Currently, there is no suitable tool to provide non-invasive, non-ionizing dynamic imaging of neonatal mouse models with high resolution, high contrast, and deep imaging depth. In this study, we implemented a fast 3D photoacoustic tomography (PAT) system suitable for imaging neonatal mouse brains with good image quality and demonstrated its feasibility in non-invasive monitoring of the dynamic process of NBH in the whole neonatal mouse brain. The results present a high resolution and sensitivity for NBH detection. Both morphological and hemodynamic changes of the hematoma were accurately obtained. Our results demonstrated the potential of PAT as a powerful tool for the preclinical study of neonatal brain hemorrhage.
Collapse
Affiliation(s)
- Tianqi Shan
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Hao Yang
- Department of Medical Engineering, University of South Florida, Tampa, FL, USA
| | - Shixie Jiang
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, FL, USA
| | - Huabei Jiang
- Department of Medical Engineering, University of South Florida, Tampa, FL, USA
| |
Collapse
|
12
|
Wang Z, Yang F, Zhang W, Yang S. Quantitative and Anatomical Imaging of Human Skin by Noninvasive Photoacoustic Dermoscopy. Bio Protoc 2022; 12:e4372. [PMID: 35530523 PMCID: PMC9018441 DOI: 10.21769/bioprotoc.4372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 11/22/2021] [Accepted: 02/22/2022] [Indexed: 12/29/2022] Open
Abstract
Imaging plays a vital role in the diagnosis and treatment of skin diseases. However, pure optical imaging technique is limited to the visualization of superficial skin tissues. Ultrasonic imaging technique can detect deep tissues, but it lacks detailed information on microscopic pathological structures. Photoacoustic imaging is an advanced technology that bridges the spatial-resolution gap between optical and ultrasonic techniques, by the modes of optical excitation and acoustic detection. Photoacoustic dermoscopy (PAD), based on photoacoustic technology, can noninvasively obtain high-resolution anatomical structures by endogenous absorbers, such as melanin, hemoglobin, lipids, etc. In the past years, PAD has gradually been developed in clinical dermatology for the diagnosis of melanoma, psoriasis, port-wine stains, dermatitis, skin grafting, and testing the efficacy of cosmetics. This protocol provides detailed procedures for PAD construction, including component selection, equipment setup, and system calibration. A step-by-step guide for human skin imaging is provided as an example application. Image reconstruction and troubleshooting procedures are also elaborated. PAD offers the 3D volumetric images of human skin, and quantitatively analyzes the vascular morphology in the dermis. The protocol will provide clinicians with standardized and reasonable guidance in dermatological imaging.
Collapse
Affiliation(s)
- Zhiyang Wang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Fei Yang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Wuyu Zhang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China,Guangdong Photoacoustic Medical Technology Co., Ltd., Guangzhou, China
| | - Sihua Yang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China,*For correspondence:
| |
Collapse
|