1
|
Chao BT, Sage AT, McInnis MC, Ma J, Grubert Van Iderstine M, Zhou X, Valero J, Cypel M, Liu M, Wang B, Keshavjee S. Improving prognostic accuracy in lung transplantation using unique features of isolated human lung radiographs. NPJ Digit Med 2024; 7:272. [PMID: 39363013 PMCID: PMC11452202 DOI: 10.1038/s41746-024-01260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/15/2024] [Indexed: 10/05/2024] Open
Abstract
Ex vivo lung perfusion (EVLP) enables advanced assessment of human lungs for transplant suitability. We developed a convolutional neural network (CNN)-based approach to analyze the largest cohort of isolated lung radiographs to date. CNNs were trained to process 1300 longitudinal radiographs from n = 650 clinical EVLP cases. Latent features were transformed into principal components (PC) and correlated with known radiographic findings. PCs were combined with physiological data to classify clinical outcomes: (1) recipient time to extubation of <72 h, (2) ≥ 72 h, and (3) lungs unsuitable for transplantation. The top PC was significantly correlated with infiltration (Spearman R: 0·72, p < 0·0001), and adding radiographic PCs significantly improved the discrimination for clinical outcomes (Accuracy: 73 vs 78%, p = 0·014). CNN-derived radiographic lung features therefore add substantial value to the current assessments. This approach can be adopted by EVLP centers worldwide to harness radiographic information without requiring real-time radiological expertise.
Collapse
Affiliation(s)
- Bonnie T Chao
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Andrew T Sage
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Micheal C McInnis
- University Medical Imaging Toronto, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Department of Medical Imaging, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jun Ma
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Vector Institute, University of Toronto, Toronto, ON, Canada
| | - Micah Grubert Van Iderstine
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Xuanzi Zhou
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jerome Valero
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Marcelo Cypel
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mingyao Liu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Bo Wang
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Vector Institute, University of Toronto, Toronto, ON, Canada
- AI Hub, University Health Network, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Shaf Keshavjee
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- AI Hub, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
2
|
Kosaka R, Sakota D, Sakanoue I, Niikawa H, Ohuchi K, Arai H, McCurry KR, Okamoto T. Real-time Lung Weight Measurement During Cellular Ex Vivo Lung Perfusion: An Early Predictor of Transplant Suitability. Transplantation 2023; 107:628-638. [PMID: 36476980 PMCID: PMC9944746 DOI: 10.1097/tp.0000000000004380] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/10/2022] [Accepted: 07/25/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Increased extravascular lung water during ex vivo lung perfusion (EVLP) is associated with ischemia reperfusion injury and poor pulmonary function. A non-invasive technique for evaluating extravascular lung water during EVLP is desired to assess the transplant suitability of lungs. We investigated real-time lung weight measurements as a reliable method for assessing pulmonary functions in cellular EVLP using a porcine lung model. METHODS Fifteen pigs were randomly divided into 3 groups: control (no warm ischemia) or donation after circulatory death groups with 60 or 90 min of warm ischemia (n = 5, each). Real-time lung weight gain was measured by load cells positioned at the bottom of the organ chamber. RESULTS Real-time lung weight gain at 2 h was significantly correlated with lung weight gain as measured on a back table ( R = 0.979, P < 0.01). Lung weight gain in non-suitable cases (n = 6) was significantly higher than in suitable cases (n = 9) at 40 min (51.6 ± 46.0 versus -8.8 ± 25.7 g; P < 0.01, cutoff = +12 g, area under the curve = 0.907). Lung weight gain at 40 min was significantly correlated with PaO 2 /FiO 2 , peak inspiratory pressure, shunt ratio, wet/dry ratio, and transplant suitability at 2 h ( P < 0.05, each). In non-suitable cases, lung weight gain at 66% and 100% of cardiac output was significantly higher than at 33% ( P < 0.05). CONCLUSIONS Real-time lung weight measurement could potentially be an early predictor of pulmonary function in cellular EVLP.
Collapse
Affiliation(s)
- Ryo Kosaka
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Daisuke Sakota
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Ichiro Sakanoue
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH
- Department of Inflammation and Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Hiromichi Niikawa
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Katsuhiro Ohuchi
- Department of Advanced Surgical Technology Research and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hirokuni Arai
- Department of Cardiovascular Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenneth R. McCurry
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH
- Department of Inflammation and Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Transplant Center, Cleveland Clinic, Cleveland, OH
| | - Toshihiro Okamoto
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH
- Department of Inflammation and Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Transplant Center, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
3
|
Noda K, Chan EG, Furukawa M, Ryan JP, Clifford S, Luketich JD, Sanchez PG. Single-center experience of ex vivo lung perfusion and subsequent lung transplantation. Clin Transplant 2023; 37:e14901. [PMID: 36588340 DOI: 10.1111/ctr.14901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND The safety of lung transplantation using ex vivo lung perfusion (EVLP) has been confirmed in multiple clinical studies; however, limited evidence is currently available regarding the potential effects of EVLP on posttransplant graft complications and survival with mid- to long-term follow-up. In this study, we reviewed our institutional data to better understand the impact of EVLP. METHODS Lungs placed on EVLP from 2014 through 2020 and transplant outcomes were retrospectively analyzed. Data were compared between lungs transplanted and declined after EVLP, between patients with severe primary graft dysfunction (PGD3) and no PGD3 after EVLP, and between matched patients with lungs transplanted with and without EVLP. RESULTS In total, 98 EVLP cases were performed. Changes in metabolic indicators during EVLP were correlated with graft quality and transplantability, but not changes in physiological parameters. Among 58 transplanted lungs after EVLP, PGD3 at 72 h occurred in 36.9% and was associated with preservation time, mechanical support prior to transplant, and intraoperative transfusion volume. Compared with patients without EVLP, patients who received lungs screened with EVLP had a higher incidence of PGD3 and longer ICU and hospital stays. Lung grafts placed on EVLP exhibited a significantly higher chance of developing airway anastomotic ischemic injury by 30 days posttransplant. Acute and chronic graft rejection, pulmonary function, and posttransplant survival were not different between patients with lungs screened on EVLP versus lungs with no EVLP. CONCLUSION EVLP use is associated with an increase of early posttransplant adverse events, but graft functional outcomes and patient survival are preserved.
Collapse
Affiliation(s)
- Kentaro Noda
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ernest G Chan
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Masashi Furukawa
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John P Ryan
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah Clifford
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - James D Luketich
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Pablo G Sanchez
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
4
|
Kosaka R, Sakota D, Niikawa H, Ohuchi K, Arai H, McCurry KR, Okamoto T. Lung thermography during the initial reperfusion period to assess pulmonary function in cellular ex vivo lung perfusion. Artif Organs 2022; 46:1522-1532. [PMID: 35230734 DOI: 10.1111/aor.14219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/09/2022] [Accepted: 02/21/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Thermography is a non-invasive technology to detect low temperatures in poorly circulated areas. In ex vivo lung perfusion (EVLP), lungs are rewarmed to body temperature during the initial 1 h. Currently, the effect of graft thermal changes during the rewarming phase on pulmonary function is unknown. In this study, we evaluated the correlation of lung surface temperature with physiological parameters, wet/dry ratio, and transplant suitability in Lund-type EVLP. METHODS Fifteen pigs were divided into three groups: control group (no warm ischemia) or donation after circulatory death groups with 60 or 90 min of warm ischemia (n = 5, each). Thermal images of the lower lobes were continuously collected from the bottom of organ chamber using infrared thermography throughout EVLP. RESULTS At 8 min, lung surface temperatures of non-suitable cases were significantly lower than in suitable cases (25.1 ± 0.6 vs. 27.8 ± 1.2°C, P < 0.001), while there was no difference in lung surface temperature between the two groups at 0-4 min and 12-120 min. There was a significant negative correlation between lung surface temperature at 8 min and wet/dry ratio at 2 h in the lower lobes (R = -0.769, P < 0.001, cut-off = 26°C, Area under the curve = 1.0). A lung surface temperature of < 26°C was significantly correlated with poor pulmonary function and transplant non-suitability. CONCLUSION A lung surface temperature of ≥ 26°C at 8 min is a good early predictor of transplant suitability in cellular EVLP and might be applicable in clinical EVLP.
Collapse
Affiliation(s)
- Ryo Kosaka
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Daisuke Sakota
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Hiromichi Niikawa
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Katsuhiro Ohuchi
- Department of Advanced Surgical Technology Research and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, Japan
| | - Hirokuni Arai
- Department of Cardiovascular Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Kenneth R McCurry
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Inflammation and Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Transplant Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Toshihiro Okamoto
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Inflammation and Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Transplant Center, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|