1
|
Xu J, Zhu M, Tang P, Li J, Gao K, Qiu H, Zhao S, Lan G, Jia H, Yu B. Visualization enhancement by PCA-based image fusion for skin burns assessment in polarization-sensitive OCT. BIOMEDICAL OPTICS EXPRESS 2024; 15:4190-4205. [PMID: 39022536 PMCID: PMC11249677 DOI: 10.1364/boe.521399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 07/20/2024]
Abstract
Polarization-sensitive optical coherence tomography (PS-OCT) is a functional imaging tool for measuring tissue birefringence characteristics. It has been proposed as a potentially non-invasive technique for evaluating skin burns. However, the PS-OCT modality usually suffers from high system complexity and relatively low tissue-specific contrast, which makes assessing the extent of burns in skin tissue difficult. In this study, we employ an all-fiber-based PS-OCT system with single-state input, which is simple and efficient for skin burn assessment. Multiple parameters, such as phase retardation (PR), degree of polarization uniformity (DOPU), and optical axis orientation, are obtained to extract birefringent features, which are sensitive to subtle changes in structural arrangement and tissue composition. Experiments on ex vivo porcine skins burned at different temperatures were conducted for skin burn investigation. The burned depths estimated by PR and DOPU increase linearly with the burn temperature to a certain extent, which is helpful in classifying skin burn degrees. We also propose an algorithm of image fusion based on principal component analysis (PCA) to enhance tissue contrast for the multi-parameter data of PS-OCT imaging. The results show that the enhanced images generated by the PCA-based image fusion method have higher tissue contrast, compared to the en-face polarization images by traditional mean value projection. The proposed approaches in this study make it possible to assess skin burn severity and distinguish between burned and normal tissues.
Collapse
Affiliation(s)
- Jingjiang Xu
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University
, Foshan, Guangdong 528000, China
- Innovation and Entrepreneurship Teams Project of Guangdong Pearl River Talents Program, Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528051, China
| | - Mingtao Zhu
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, Guangdong 528000, China
| | - Peijun Tang
- College of Biophotonics, South China Normal University, Guangzhou 510006, China
| | - Junyun Li
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Kai Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Haixia Qiu
- Department of Laser Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Shiyong Zhao
- Tianjin Hengyu Medical Technology Co., Ltd., Tianjin 300000, China
| | - Gongpu Lan
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University
, Foshan, Guangdong 528000, China
- Innovation and Entrepreneurship Teams Project of Guangdong Pearl River Talents Program, Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528051, China
| | - Haibo Jia
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Bo Yu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| |
Collapse
|
2
|
Burmistrov DE, Gudkov SV, Franceschi C, Vedunova MV. Sex as a Determinant of Age-Related Changes in the Brain. Int J Mol Sci 2024; 25:7122. [PMID: 39000227 PMCID: PMC11241365 DOI: 10.3390/ijms25137122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The notion of notable anatomical, biochemical, and behavioral distinctions within male and female brains has been a contentious topic of interest within the scientific community over several decades. Advancements in neuroimaging and molecular biological techniques have increasingly elucidated common mechanisms characterizing brain aging while also revealing disparities between sexes in these processes. Variations in cognitive functions; susceptibility to and progression of neurodegenerative conditions, notably Alzheimer's and Parkinson's diseases; and notable disparities in life expectancy between sexes, underscore the significance of evaluating aging within the framework of gender differences. This comprehensive review surveys contemporary literature on the restructuring of brain structures and fundamental processes unfolding in the aging brain at cellular and molecular levels, with a focus on gender distinctions. Additionally, the review delves into age-related cognitive alterations, exploring factors influencing the acceleration or deceleration of aging, with particular attention to estrogen's hormonal support of the central nervous system.
Collapse
Affiliation(s)
- Dmitriy E. Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia;
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia;
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Claudio Franceschi
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| |
Collapse
|
3
|
Bauer AQ, Gibson EA, Wang H, Srinivasan VJ. Introduction to the Optics and the Brain 2023 feature issue. BIOMEDICAL OPTICS EXPRESS 2024; 15:2110-2113. [PMID: 38633102 PMCID: PMC11019680 DOI: 10.1364/boe.517678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Indexed: 04/19/2024]
Abstract
A feature issue is being presented by a team of guest editors containing papers based on contributed submissions including studies presented at Optics and the Brain, held April 24-27, 2023 as part of Optica Biophotonics Congress: Optics in the Life Sciences, in Vancouver, Canada.
Collapse
Affiliation(s)
- Adam Q. Bauer
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Emily A. Gibson
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Hui Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Vivek J. Srinivasan
- Tech4Health Institute, NYU Langone Health, New York, New York 10010, USA
- Department of Ophthalmology, NYU Langone Health, New York, New York 10017, USA
| |
Collapse
|
4
|
Gubarkova E, Kiseleva E, Moiseev A, Vorontsov D, Kuznetsov S, Plekhanov A, Karabut M, Sirotkina M, Gelikonov G, Gamayunov S, Vorontsov A, Krivorotko P, Gladkova N. Intraoperative Assessment of Breast Cancer Tissues after Breast-Conserving Surgery Based on Mapping the Attenuation Coefficients in 3D Cross-Polarization Optical Coherence Tomography. Cancers (Basel) 2023; 15:cancers15092663. [PMID: 37174128 PMCID: PMC10177188 DOI: 10.3390/cancers15092663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/20/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Intraoperative differentiation of tumorous from non-tumorous tissue can help in the assessment of resection margins in breast cancer and its response to therapy and, potentially, reduce the incidence of tumor recurrence. In this study, the calculation of the attenuation coefficient and its color-coded 2D distribution was performed for different breast cancer subtypes using spectral-domain CP OCT. A total of 68 freshly excised human breast specimens containing tumorous and surrounding non-tumorous tissues after BCS was studied. Immediately after obtaining structural 3D CP OCT images, en face color-coded attenuation coefficient maps were built in co-(Att(co)) and cross-(Att(cross)) polarization channels using a depth-resolved approach to calculating the values in each A-scan. We determined spatially localized signal attenuation in both channels and reported ranges of attenuation coefficients to five selected breast tissue regions (adipose tissue, non-tumorous fibrous connective tissue, hyalinized tumor stroma, low-density tumor cells in the fibrotic tumor stroma and high-density clusters of tumor cells). The Att(cross) coefficient exhibited a stronger gain contrast of studied tissues compared to the Att(co) coefficient (i.e., conventional attenuation coefficient) and, therefore, allowed improved differentiation of all breast tissue types. It has been shown that color-coded attenuation coefficient maps may be used to detect inter- and intra-tumor heterogeneity of various breast cancer subtypes as well as to assess the effectiveness of therapy. For the first time, the optimal threshold values of the attenuation coefficients to differentiate tumorous from non-tumorous breast tissues were determined. Diagnostic testing values for Att(cross) coefficient were higher for differentiation of tumor cell areas and tumor stroma from non-tumorous fibrous connective tissue: diagnostic accuracy was 91-99%, sensitivity-96-98%, and specificity-87-99%. Att(co) coefficient is more suitable for the differentiation of tumor cell areas from adipose tissue: diagnostic accuracy was 83%, sensitivity-84%, and specificity-84%. Therefore, the present study provides a new diagnostic approach to the differentiation of breast cancer tissue types based on the assessment of the attenuation coefficient from real-time CP OCT data and has the potential to be used for further rapid and accurate intraoperative assessment of the resection margins during BCS.
Collapse
Affiliation(s)
- Ekaterina Gubarkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia
| | - Elena Kiseleva
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia
| | - Alexander Moiseev
- Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanova St., 603950 Nizhny Novgorod, Russia
| | - Dmitry Vorontsov
- Nizhny Novgorod Regional Oncologic Hospital, 11/1 Delovaya St., 603126 Nizhny Novgorod, Russia
| | - Sergey Kuznetsov
- Nizhny Novgorod Regional Oncologic Hospital, 11/1 Delovaya St., 603126 Nizhny Novgorod, Russia
| | - Anton Plekhanov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia
| | - Maria Karabut
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia
| | - Marina Sirotkina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia
| | - Grigory Gelikonov
- Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanova St., 603950 Nizhny Novgorod, Russia
| | - Sergey Gamayunov
- Nizhny Novgorod Regional Oncologic Hospital, 11/1 Delovaya St., 603126 Nizhny Novgorod, Russia
| | - Alexey Vorontsov
- Nizhny Novgorod Regional Oncologic Hospital, 11/1 Delovaya St., 603126 Nizhny Novgorod, Russia
| | - Petr Krivorotko
- N.N. Petrov National Medicine Research Center of Oncology, 68 Leningradskaya St., 197758 St. Petersburg, Russia
| | - Natalia Gladkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia
| |
Collapse
|
5
|
Lu J, Cheng Y, Li J, Liu Z, Shen M, Zhang Q, Liu J, Herrera G, Hiya FE, Morin R, Joseph J, Gregori G, Rosenfeld PJ, Wang RK. Automated segmentation and quantification of calcified drusen in 3D swept source OCT imaging. BIOMEDICAL OPTICS EXPRESS 2023; 14:1292-1306. [PMID: 36950236 PMCID: PMC10026581 DOI: 10.1364/boe.485999] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Qualitative and quantitative assessments of calcified drusen are clinically important for determining the risk of disease progression in age-related macular degeneration (AMD). This paper reports the development of an automated algorithm to segment and quantify calcified drusen on swept-source optical coherence tomography (SS-OCT) images. The algorithm leverages the higher scattering property of calcified drusen compared with soft drusen. Calcified drusen have a higher optical attenuation coefficient (OAC), which results in a choroidal hypotransmission defect (hypoTD) below the calcified drusen. We show that it is possible to automatically segment calcified drusen from 3D SS-OCT scans by combining the OAC within drusen and the hypoTDs under drusen. We also propose a correction method for the segmentation of the retina pigment epithelium (RPE) overlying calcified drusen by automatically correcting the RPE by an amount of the OAC peak width along each A-line, leading to more accurate segmentation and quantification of drusen in general, and the calcified drusen in particular. A total of 29 eyes with nonexudative AMD and calcified drusen imaged with SS-OCT using the 6 × 6 mm2 scanning pattern were used in this study to test the performance of the proposed automated method. We demonstrated that the method achieved good agreement with the human expert graders in identifying the area of calcified drusen (Dice similarity coefficient: 68.27 ± 11.09%, correlation coefficient of the area measurements: r = 0.9422, the mean bias of the area measurements = 0.04781 mm2).
Collapse
Affiliation(s)
- Jie Lu
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Yuxuan Cheng
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Jianqing Li
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ziyu Liu
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Mengxi Shen
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Qinqin Zhang
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
- Research and Development, Carl Zeiss Meditec, Inc., Dublin, CA, USA
| | - Jeremy Liu
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Gissel Herrera
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Farhan E. Hiya
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Rosalyn Morin
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Joan Joseph
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Giovanni Gregori
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Philip J. Rosenfeld
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
6
|
Potapov A, Loginova M, Moiseev A, Radenska-Lopovok S, Kuznetsov S, Kuznetsova I, Mustafina N, Safonov I, Gladkova N, Sirotkina M. Cross-Polarization Optical Coherence Tomography for Clinical Evaluation of Dermal Lesion Degrees in Vulvar Lichen Sclerosus. Sovrem Tekhnologii Med 2023; 15:53-60. [PMID: 37388751 PMCID: PMC10306962 DOI: 10.17691/stm2023.15.1.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Indexed: 09/29/2023] Open
Abstract
The aim of the study was to identify different degrees of dermal lesions in vulvar lichen sclerosus (VLS) using cross-polarization optical coherence tomography (CP OCT) based on attenuation coefficient to detect disease early manifestations and to monitor the effectiveness of treatment. Materials and Methods The study included 10 patients without pathology and 39 patients with VLS diagnosed histologically. CP OCT was performed in vivo on the inner surface of the labia minora, in the main lesion area. From each scanning point, a 3.4×3.4×1.25-mm3 3D data array was obtained in 26 s. CP OCT examination results were compared with histological examination of specimens stained with Van Gieson's picrofuchsin.Quantitative analysis of OCT images was performed by measuring the attenuation coefficient in co-polarization and cross-polarization. For visual analysis, color-coded charts were developed based on OCT attenuation coefficients. Results According to histological examination, all patients with VLS were divided into 4 groups as per dermal lesion degree: initial (8 patients); mild (7 patients); moderate (9 patients); severe (15 patients). Typical features of different degrees were interfibrillary edema up to 250 μm deep for initial degree, thickened collagen bundles without edema up to 350 μm deep for mild degree, dermis homogenization up to 700 μm deep for moderate degree, dermis homogenization and total edema up to 1200 μm deep for severe degree.Pathological processes in dermis during VLS like interfibrillary edema and collagen bundles homogenization were visualized using CP OCT method based on values of attenuation coefficient in co- and cross-polarization channels. However, CP OCT method appeared to be less sensitive to changes of collagen bundles thickness not allowing to distinguish thickened collagen bundles from normal ones with enough statistical significance. The CP OCT method was able to differentiate all degrees of dermal lesions among themselves. OCT attenuation coefficients differed from normal condition with statistical significance for all degrees of lesions, except for mild. Conclusion For the first time, quantitative parameters for each degrees of dermis lesion in VLS, including initial degree, were determined by CP OCT method allowing to detect the disease at an early stage and to monitor the applied clinical treatment effectiveness.
Collapse
Affiliation(s)
- A.L. Potapov
- PhD Student, Laboratory Assistant, Scientific Laboratory of Optical Coherence Tomography, Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - M.M. Loginova
- Junior Researcher, Scientific Laboratory of Optical Coherence Tomography, Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; PhD Student, Institute of Biology and Biomedicine; National Research Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603950, Russia
| | - A.A. Moiseev
- Senior Researcher, Laboratory of Highly Sensitive Optical Measurements; Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanova St., Nizhny Novgorod, 603950, Russia
| | - S.G. Radenska-Lopovok
- Professor, Institute of Clinical Morphology and Digital Pathology; I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Malaya Trubetskaya St., Moscow, 119991, Russia
| | - S.S. Kuznetsov
- Professor, Head of Pathological Department; Nizhny Novgorod Regional Clinical Hospital named after N.A. Semashko, 190 Rodionova St., Nizhny Novgorod, 603126, Russia
| | - I.A. Kuznetsova
- Head of the 2 Gynecological Department; Nizhny Novgorod Regional Clinical Hospital named after N.A. Semashko, 190 Rodionova St., Nizhny Novgorod, 603126, Russia Associate Professor, Department of Obstetrics and Gynecology; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - N.N. Mustafina
- Obstetrician-Gynecologist; Nizhny Novgorod Regional Clinical Hospital named after N.A. Semashko, 190 Rodionova St., Nizhny Novgorod, 603126, Russia
| | - I.K. Safonov
- Obstetrician-Gynecologist; Nizhny Novgorod Regional Clinical Hospital named after N.A. Semashko, 190 Rodionova St., Nizhny Novgorod, 603126, Russia
| | - N.D. Gladkova
- Professor, Head of the Scientific Laboratory of Optical Coherence Tomography, Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - M.A. Sirotkina
- Director of the Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| |
Collapse
|
7
|
Achkasova KA, Moiseev AA, Yashin KS, Kiseleva EB, Bederina EL, Loginova MM, Medyanik IA, Gelikonov GV, Zagaynova EV, Gladkova ND. Nondestructive label-free detection of peritumoral white matter damage using cross-polarization optical coherence tomography. Front Oncol 2023; 13:1133074. [PMID: 36937429 PMCID: PMC10017731 DOI: 10.3389/fonc.2023.1133074] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/27/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction To improve the quality of brain tumor resections, it is important to differentiate zones with myelinated fibers destruction from tumor tissue and normal white matter. Optical coherence tomography (OCT) is a promising tool for brain tissue visualization and in the present study, we demonstrate the ability of cross-polarization (CP) OCT to detect damaged white matter and differentiate it from normal and tumor tissues. Materials and methods The study was performed on 215 samples of brain tissue obtained from 57 patients with brain tumors. The analysis of the obtained OCT data included three stages: 1) visual analysis of structural OCT images; 2) quantitative assessment based on attenuation coefficients estimation in co- and cross-polarizations; 3) building of color-coded maps with subsequent visual analysis. The defining characteristics of structural CP OCT images and color-coded maps were determined for each studied tissue type, and then two classification tests were passed by 8 blinded respondents after a training. Results Visual assessment of structural CP OCT images allows detecting white matter areas with damaged myelinated fibers and differentiate them from normal white matter and tumor tissue. Attenuation coefficients also allow distinguishing all studied brain tissue types, while it was found that damage to myelinated fibers leads to a statistically significant decrease in the values of attenuation coefficients compared to normal white matter. Nevertheless, the use of color-coded optical maps looks more promising as it combines the objectivity of optical coefficient and clarity of the visual assessment, which leads to the increase of the diagnostic accuracy of the method compared to visual analysis of structural OCT images. Conclusions Alteration of myelinated fibers causes changes in the scattering properties of the white matter, which gets reflected in the nature of the received CP OCT signal. Visual assessment of structural CP OCT images and color-coded maps allows differentiating studied tissue types from each other, while usage of color-coded maps demonstrates higher diagnostic accuracy values in comparison with structural images (F-score = 0.85-0.86 and 0.81, respectively). Thus, the results of the study confirm the potential of using OCT as a neuronavigation tool during resections of brain tumors.
Collapse
Affiliation(s)
- Ksenia A. Achkasova
- Research institute of experimental oncology and biomedical technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- *Correspondence: Ksenia A. Achkasova,
| | - Alexander A. Moiseev
- Laboratory of Highly Sensitive Optical Measurements, Institute of Applied Physics of Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Konstantin S. Yashin
- Department of oncology and neurosurgery, University clinic, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Elena B. Kiseleva
- Research institute of experimental oncology and biomedical technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Evgenia L. Bederina
- Department of pathology, University clinic, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Maria M. Loginova
- Research institute of experimental oncology and biomedical technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Igor A. Medyanik
- Department of oncology and neurosurgery, University clinic, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Grigory V. Gelikonov
- Laboratory of Highly Sensitive Optical Measurements, Institute of Applied Physics of Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Elena V. Zagaynova
- Research institute of experimental oncology and biomedical technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Lobachevsky State University, Nizhny Novgorod, Russia
| | - Natalia D. Gladkova
- Research institute of experimental oncology and biomedical technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| |
Collapse
|
8
|
Shi Y, Lu J, Le N, Wang RK. Integrating a pressure sensor with an OCT handheld probe to facilitate imaging of microvascular information in skin tissue beds. BIOMEDICAL OPTICS EXPRESS 2022; 13:6153-6166. [PMID: 36733756 PMCID: PMC9872897 DOI: 10.1364/boe.473013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 05/05/2023]
Abstract
Optical coherence tomography (OCT) and OCT angiography (OCTA) have been increasingly applied in skin imaging applications in dermatology, where the imaging is often performed with the OCT probe in contact with the skin surface. However, this contact mode imaging can introduce uncontrollable mechanical stress applied to the skin, inevitably complicating the interpretation of OCT/OCTA imaging results. There remains a need for a strategy for assessing local pressure applied on the skin during imaging acquisition. This study reports a handheld scanning probe integrated with built-in pressure sensors, allowing the operator to control the mechanical stress applied to the skin in real-time. With real time feedback information, the operator can easily determine whether the pressure applied to the skin would affect the imaging quality so as to obtain repeatable and reliable OCTA images for a more accurate investigation of skin conditions. Using this probe, imaging of palm skin was used in this study to demonstrate how the OCTA imaging would have been affected by different mechanical pressures ranging from 0 to 69 kPa. The results showed that OCTA imaging is relatively stable when the pressure is less than 11 kPa, and within this range, the change of vascular area density calculated from the OCTA imaging is below 0.13%. In addition, the probe was used to augment the OCT monitoring of blood flow changes during a reactive hyperemia experiment, in which the operator could properly control the amount of pressure applied to the skin surface and achieve full release after compression stimulation.
Collapse
Affiliation(s)
- Yaping Shi
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
- These authors contributed equally to this study
| | - Jie Lu
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
- These authors contributed equally to this study
| | - Nhan Le
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
- Department of Ophthalmology, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
9
|
Optical Coherence Tomography Angiography and Attenuation Imaging for Label-Free Observation of Functional Changes in the Intestine after Sympathectomy: A Pilot Study. PHOTONICS 2022. [DOI: 10.3390/photonics9050304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We present in this study optical coherence tomography angiography (OCTA) and OCT attenuation imaging (OCTAI) for in vivo non-destructive visualization of intramural blood and lymphatic vessels of the intestine wall. Rabbit small intestine in the norm and after thoracolumbar sympathectomy served as the object of the intraoperative study. Compared to OCTA real-time imaging, OCTAI takes several minutes and can be termed as “nearly real time”. OCTAI signal processing was modified to take into account the signal-to-noise ratio and the final thickness of the intestine wall. The results showed that, after sympathectomy, changes in functioning of intramural blood and lymphatic vessels were observed with a high statistical significance. The occurrence of trauma-induced constriction of the blood and lymphatic vessels led to an especially pronounced decrease in the length of small-caliber (<30 µm) blood vessels (p < 10−5), as well as in the volumetric density of lymphatic vessels (on average by ~50%) compared to their initial state. Remarkably, OCTA/OCTAI modalities provide the unique ability for “nearly-instant detection” of changes in functional status of the tissues, long before they become visible on histology. The proposed approach can be used in further experiments to clarify the mechanisms of changes in intestinal blood and lymph flows in response to trauma of the nervous system. Furthermore, potentially it can be used intraoperatively in patients requiring express diagnosis of the state of intramural blood and lymph circulation.
Collapse
|