1
|
Pirone D, Montella A, Sirico D, Mugnano M, Del Giudice D, Kurelac I, Tirelli M, Iolascon A, Bianco V, Memmolo P, Capasso M, Miccio L, Ferraro P. Phenotyping neuroblastoma cells through intelligent scrutiny of stain-free biomarkers in holographic flow cytometry. APL Bioeng 2023; 7:036118. [PMID: 37753527 PMCID: PMC10519746 DOI: 10.1063/5.0159399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
To efficiently tackle certain tumor types, finding new biomarkers for rapid and complete phenotyping of cancer cells is highly demanded. This is especially the case for the most common pediatric solid tumor of the sympathetic nervous system, namely, neuroblastoma (NB). Liquid biopsy is in principle a very promising tool for this purpose, but usually enrichment and isolation of circulating tumor cells in such patients remain difficult due to the unavailability of universal NB cell-specific surface markers. Here, we show that rapid screening and phenotyping of NB cells through stain-free biomarkers supported by artificial intelligence is a viable route for liquid biopsy. We demonstrate the concept through a flow cytometry based on label-free holographic quantitative phase-contrast microscopy empowered by machine learning. In detail, we exploit a hierarchical decision scheme where at first level NB cells are classified from monocytes with 97.9% accuracy. Then we demonstrate that different phenotypes are discriminated within NB class. Indeed, for each cell classified as NB its belonging to one of four NB sub-populations (i.e., CHP212, SKNBE2, SHSY5Y, and SKNSH) is evaluated thus achieving accuracy in the range 73.6%-89.1%. The achieved results solve the realistic problem related to the identification circulating tumor cell, i.e., the possibility to recognize and detect tumor cells morphologically similar to blood cells, which is the core issue in liquid biopsy based on stain-free microscopy. The presented approach operates at lab-on-chip scale and emulates real-world scenarios, thus representing a future route for liquid biopsy by exploiting intelligent biomedical imaging.
Collapse
Affiliation(s)
| | | | - Daniele Sirico
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello,” via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Martina Mugnano
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello,” via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Danila Del Giudice
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello,” via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | | | | | | | - Vittorio Bianco
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello,” via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Pasquale Memmolo
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello,” via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Mario Capasso
- Authors to whom correspondence should be addressed: and
| | - Lisa Miccio
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello,” via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Pietro Ferraro
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello,” via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| |
Collapse
|
2
|
Pirone D, Montella A, Sirico DG, Mugnano M, Villone MM, Bianco V, Miccio L, Porcelli AM, Kurelac I, Capasso M, Iolascon A, Maffettone PL, Memmolo P, Ferraro P. Label-free liquid biopsy through the identification of tumor cells by machine learning-powered tomographic phase imaging flow cytometry. Sci Rep 2023; 13:6042. [PMID: 37055398 PMCID: PMC10101968 DOI: 10.1038/s41598-023-32110-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/21/2023] [Indexed: 04/15/2023] Open
Abstract
Image-based identification of circulating tumor cells in microfluidic cytometry condition is one of the most challenging perspectives in the Liquid Biopsy scenario. Here we show a machine learning-powered tomographic phase imaging flow cytometry system capable to provide high-throughput 3D phase-contrast tomograms of each single cell. In fact, we show that discrimination of tumor cells against white blood cells is potentially achievable with the aid of artificial intelligence in a label-free flow-cyto-tomography method. We propose a hierarchical machine learning decision-maker, working on a set of features calculated from the 3D tomograms of the cells' refractive index. We prove that 3D morphological features are adequately distinctive to identify tumor cells versus the white blood cell background in the first stage and, moreover, in recognizing the tumor type at the second decision step. Proof-of-concept experiments are shown, in which two different tumor cell lines, namely neuroblastoma cancer cells and ovarian cancer cells, are used against monocytes. The reported results allow claiming the identification of tumor cells with a success rate higher than 97% and with an accuracy over 97% in discriminating between the two cancer cell types, thus opening in a near future the route to a new Liquid Biopsy tool for detecting and classifying circulating tumor cells in blood by stain-free method.
Collapse
Affiliation(s)
- Daniele Pirone
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Annalaura Montella
- CEINGE Advanced Biotechnologies, Naples, Italy
- DMMBM, Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Daniele G Sirico
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Martina Mugnano
- Department of Chemical, Materials and Production Engineering, DICMaPI, University of Naples "Federico II", Piazzale Tecchio 80, 80125, Naples, Italy
| | - Massimiliano M Villone
- Department of Chemical, Materials and Production Engineering, DICMaPI, University of Naples "Federico II", Piazzale Tecchio 80, 80125, Naples, Italy
| | - Vittorio Bianco
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Lisa Miccio
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Anna Maria Porcelli
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
- Interdepartmental Centre for Industrial Research 'Scienze Della Vita e Tecnologie per La Salute', University of Bologna, Bologna, Italy
- Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Ivana Kurelac
- Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
- DIMEC, Department of Medical and Surgical Sciences, Centro di Studio e Ricerca Sulle Neoplasie (CSR) Ginecologiche, Alma Mater Studiorum-University of Bologna, 40138, Bologna, Italy
| | - Mario Capasso
- CEINGE Advanced Biotechnologies, Naples, Italy
- DMMBM, Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Achille Iolascon
- CEINGE Advanced Biotechnologies, Naples, Italy
- DMMBM, Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Pier Luca Maffettone
- Department of Chemical, Materials and Production Engineering, DICMaPI, University of Naples "Federico II", Piazzale Tecchio 80, 80125, Naples, Italy
| | - Pasquale Memmolo
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy.
| | - Pietro Ferraro
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy.
| |
Collapse
|