1
|
Lloyd EM, Hepburn MS, Li J, Mowla A, Jeong JH, Hwang Y, Choi YS, Jackaman C, Kennedy BF, Grounds MD. Multimodal three-dimensional characterization of murine skeletal muscle micro-scale elasticity, structure, and composition: Impact of dysferlinopathy, Duchenne muscular dystrophy, and age on three hind-limb muscles. J Mech Behav Biomed Mater 2024; 160:106751. [PMID: 39326249 DOI: 10.1016/j.jmbbm.2024.106751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/21/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024]
Abstract
Skeletal muscle tissue function is governed by the mechanical properties and organization of its components, including myofibers, extracellular matrix, and adipose tissue, which can be modified by the onset and progression of many disorders. This study used a novel combination of quantitative micro-elastography and clearing-enhanced three-dimensional (3D) microscopy to assess 3D micro-scale elasticity and micro-architecture of muscles from two muscular dystrophies: dysferlinopathy and Duchenne muscular dystrophy, using male BLA/J and mdx mice, respectively, and their wild-type (WT) controls. We examined three muscles with varying proportions of slow- and fast-twitch myofibers: the soleus (predominantly slow), extensor digitorum longus (EDL; fast), and quadriceps (mixed), from BLA/J and WTBLA/J mice aged 3, 10, and 24 months, and mdx and WTmdx mice aged 10 months. Both dysferlin deficiency and age reduced the elasticity and variability of elasticity of the soleus and quadriceps, but not EDL. Overall, the BLA/J soleus was 20% softer than WT and less mechanically heterogeneous (-14% in standard deviation of elasticity). The BLA/J quadriceps at 24 months was 72% softer than WT and less mechanically heterogeneous (-59% in standard deviation), with substantial adipose tissue accumulation. While mdx muscles did not differ quantitatively from WT, regional heterogeneity was evident in micro-scale elasticity and micro-architecture of quadriceps (e.g., 11.2 kPa in a region with marked pathology vs 3.8 kPa in a less affected area). These results demonstrate differing biomechanical changes in hind-limb muscles of two distinct muscular dystrophies, emphasizing the potential for this novel multimodal technique to identify important differences between various myopathies.
Collapse
Affiliation(s)
- Erin M Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia; Curtin Health Innovation Research Institute, Curtin Medical School, Faculty of Health Sciences, Curtin University, Kent St, Bentley, Western Australia, 6102, Australia.
| | - Matt S Hepburn
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia; Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia; Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia; Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland.
| | - Jiayue Li
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia; Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia; Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia.
| | - Alireza Mowla
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia; Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia; Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia.
| | - Ji Hoon Jeong
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do, 31151, Republic of Korea.
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do, 31151, Republic of Korea.
| | - Yu Suk Choi
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia.
| | - Connie Jackaman
- Curtin Health Innovation Research Institute, Curtin Medical School, Faculty of Health Sciences, Curtin University, Kent St, Bentley, Western Australia, 6102, Australia.
| | - Brendan F Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia; Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia; Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia; Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia.
| | - Miranda D Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia.
| |
Collapse
|
2
|
Kiseleva EB, Sovetsky AA, Ryabkov MG, Gubarkova EV, Plekhanov AA, Bederina EL, Potapov AL, Bogomolova AY, Zaitsev VY, Gladkova ND. Detecting emergence of ruptures in individual layers of the stretched intestinal wall using optical coherence elastography: A pilot study. JOURNAL OF BIOPHOTONICS 2024; 17:e202400086. [PMID: 38923316 DOI: 10.1002/jbio.202400086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/26/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
We report a new application of compression optical coherence elastography (C-OCE) to monitor the emergence of ruptures in individual layers of longitudinally stretched small-intestine walls using tissue samples (n = 36) from nine minipigs. Before stretching, C-OCE successfully estimated stiffness for each intestine-wall layer: longitudinal muscular layer with serosa, circumferential muscular layer, submucosa and mucosa. In stretched samples, C-OCE clearly visualized initial stiffening in both muscular layers. By 25% elongation, a sharp stiffness decrease for the longitudinal muscular layer, indicated emergence of tears in all samples. With further stretching, for most samples, ruptures emerged in the circumferential muscular layer and submucosa, while mucosa remained undamaged. Histology confirmed the OCE-revealed damaging and absence of tissue damage for ~15% elongation. Thus, C-OCE has demonstrated a high potential for determining the safety tissue-stretching threshold which afterward may be used intraoperatively to prevent rupture risk in intestinal tissues stretched during various diagnostic/therapeutic procedures.
Collapse
Affiliation(s)
- Elena B Kiseleva
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Alexander A Sovetsky
- Nonlinear Geophysical Processes Department, A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Maksim G Ryabkov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Ekaterina V Gubarkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Anton A Plekhanov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Evgeniya L Bederina
- University Clinic, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Arseniy L Potapov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Alexandra Y Bogomolova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Vladimir Y Zaitsev
- Nonlinear Geophysical Processes Department, A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Natalia D Gladkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| |
Collapse
|
3
|
Navaeipour F, Hepburn MS, Li J, Metzner KL, Amos SE, Vahala D, Maher S, Choi YS, Kennedy BF. In situ stress estimation in quantitative micro-elastography. BIOMEDICAL OPTICS EXPRESS 2024; 15:3609-3626. [PMID: 38867802 PMCID: PMC11166433 DOI: 10.1364/boe.522002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 06/14/2024]
Abstract
In quantitative micro-elastography (QME), a pre-characterized compliant layer with a known stress-strain curve is utilized to map stress at the sample surface. However, differences in the boundary conditions of the compliant layer when it is mechanically characterized and when it is used in QME experiments lead to inconsistent stress estimation and consequently, inaccurate elasticity measurements. Here, we propose a novel in situ stress estimation method using an optical coherence tomography (OCT)-based uniaxial compression testing system integrated with the QME experimental setup. By combining OCT-measured axial strain with axial stress determined using a load cell in the QME experiments, we can estimate in situ stress for the compliant layer, more accurately considering its boundary conditions. Our proposed method shows improved accuracy, with an error below 10%, compared to 85% using the existing QME technique with no lubrication. Furthermore, demonstrations on hydrogels and cells indicate the potential of this approach for improving the characterization of the micro-scale mechanical properties of cells and their interactions with the surrounding biomaterial, which has potential for application in cell mechanobiology.
Collapse
Affiliation(s)
- Farzaneh Navaeipour
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia 6009, Australia
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia 6009, Australia
| | - Matt S. Hepburn
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia 6009, Australia
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia 6009, Australia
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland
| | - Jiayue Li
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia 6009, Australia
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Kai L. Metzner
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia 6009, Australia
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia 6009, Australia
| | - Sebastian E. Amos
- School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| | - Danielle Vahala
- School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| | - Samuel Maher
- School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| | - Brendan F. Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia 6009, Australia
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia 6009, Australia
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| |
Collapse
|
4
|
Martinez-Vidal L, Testi C, Pontecorvo E, Pederzoli F, Alchera E, Locatelli I, Venegoni C, Spinelli A, Lucianò R, Salonia A, Podestà A, Ruocco G, Alfano M. Progressive alteration of murine bladder elasticity in actinic cystitis detected by Brillouin microscopy. Sci Rep 2024; 14:484. [PMID: 38177637 PMCID: PMC10766652 DOI: 10.1038/s41598-023-51006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024] Open
Abstract
Bladder mechanical properties are critical for organ function and tissue homeostasis. Therefore, alterations of tissue mechanics are linked to disease onset and progression. This study aims to characterize the tissue elasticity of the murine bladder wall considering its different anatomical components, both in healthy conditions and in actinic cystitis, a state characterized by tissue fibrosis. Here, we exploit Brillouin microscopy, an emerging technique in the mechanobiology field that allows mapping tissue mechanics at the microscale, in non-contact mode and free of labeling. We show that Brillouin imaging of bladder tissues is able to recognize the different anatomical components of the bladder wall, confirmed by histopathological analysis, showing different tissue mechanical properties of the physiological bladder, as well as a significant alteration in the presence of tissue fibrosis. Our results point out the potential use of Brillouin imaging on clinically relevant samples as a complementary technique to histopathological analysis, deciphering complex mechanical alteration of each tissue layer of an organ that strongly relies on mechanical properties to perform its function.
Collapse
Affiliation(s)
- Laura Martinez-Vidal
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, 20132, Milan, Italy.
- Università Vita-Salute San Raffaele, Via Olgettina, 60, 20132, Milan, Italy.
| | - Claudia Testi
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Roma, Italy.
| | - Emanuele Pontecorvo
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Roma, Italy
- CrestOptics S.p.A., Via Di Torre Rossa, 66, 00165, Roma, Italy
| | - Filippo Pederzoli
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
- Università Vita-Salute San Raffaele, Via Olgettina, 60, 20132, Milan, Italy
| | - Elisa Alchera
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Irene Locatelli
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Chiara Venegoni
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Antonello Spinelli
- Experimental Imaging Centre, San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Roberta Lucianò
- Pathology Unit, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Andrea Salonia
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
- Università Vita-Salute San Raffaele, Via Olgettina, 60, 20132, Milan, Italy
| | - Alessandro Podestà
- Dipartimento Di Fisica "Aldo Pontremoli" and CIMAINA, Università Degli Studi Di Milano, 20133, Milan, Italy
| | - Giancarlo Ruocco
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Roma, Italy
- Dipartimento Di Fisica, Universitá Di Roma "La Sapienza", Piazzale Aldo Moro, 5, 00185, Roma, Italy
| | - Massimo Alfano
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| |
Collapse
|
5
|
Ivanova M, Bottiglieri L, Sajjadi E, Venetis K, Fusco N. Malignancies in Patients with Celiac Disease: Diagnostic Challenges and Molecular Advances. Genes (Basel) 2023; 14:376. [PMID: 36833303 PMCID: PMC9956047 DOI: 10.3390/genes14020376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Celiac disease (CD) is a multiorgan autoimmune disorder of the chronic intestinal disease group characterized by duodenal inflammation in genetically predisposed individuals, precipitated by gluten ingestion. The pathogenesis of celiac disease is now widely studied, overcoming the limits of the purely autoimmune concept and explaining its hereditability. The genomic profiling of this condition has led to the discovery of numerous genes involved in interleukin signaling and immune-related pathways. The spectrum of disease manifestations is not limited to the gastrointestinal tract, and a significant number of studies have considered the possible association between CD and neoplasms. Patients with CD are found to be at increased risk of developing malignancies, with a particular predisposition of certain types of intestinal cancer, lymphomas, and oropharyngeal cancers. This can be partially explained by common cancer hallmarks present in these patients. The study of gut microbiota, microRNAs, and DNA methylation is evolving to find the any possible missing links between CD and cancer incidence in these patients. However, the literature is extremely mixed and, therefore, our understanding of the biological interplay between CD and cancer remains limited, with significant implications in terms of clinical management and screening protocols. In this review article, we seek to provide a comprehensive overview of the genomics, epigenomics, and transcriptomics data on CD and its relation to the most frequent types of neoplasms that may occur in these patients.
Collapse
Affiliation(s)
- Mariia Ivanova
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Luca Bottiglieri
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Elham Sajjadi
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Konstantinos Venetis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| |
Collapse
|