1
|
Hezkiy EE, Kumar S, Gahramanov V, Yaglom J, Hesin A, Jadhav SS, Guzev E, Patel S, Avinery E, Firer MA, Sherman MY. Search for Synergistic Drug Combinations to Treat Chronic Lymphocytic Leukemia. Cells 2022; 11:cells11223671. [PMID: 36429097 PMCID: PMC9688317 DOI: 10.3390/cells11223671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Finding synergistic drug combinations is an important area of cancer research. Here, we sought to rationally design synergistic drug combinations with an inhibitor of BTK kinase, ibrutinib, which is used for the treatment of several types of leukemia. We (a) used a pooled shRNA screen to identify genes that protect cells from the drug, (b) identified protective pathways via bioinformatics analysis of these gene sets, and (c) identified drugs that inhibit these pathways. Based on this analysis, we established that inhibitors of proteasome and mTORC1 could synergize with ibrutinib both in vitro and in vivo. We suggest that FDA-approved inhibitors of these pathways could be effectively combined with ibrutinib for the treatment of chronic lymphocytic leukemia (CLL).
Collapse
Affiliation(s)
| | - Santosh Kumar
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| | - Valid Gahramanov
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| | - Julia Yaglom
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| | - Arkadi Hesin
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| | | | - Ekaterina Guzev
- Department of Mathematics, Ariel University, Ariel 40700, Israel
| | - Shivani Patel
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| | - Elena Avinery
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| | - Michael A. Firer
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel
- Ariel Center for Applied Cancer Research, Ariel University, Ariel 40700, Israel
| | - Michael Y. Sherman
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
- Correspondence: ; Tel.: +972-587819472
| |
Collapse
|
2
|
Wang W, Min L, Tian P, Wu C, Liu J, Hu XH. Analysis of polarized diffraction images of human red blood cells: a numerical study. BIOMEDICAL OPTICS EXPRESS 2022; 13:1161-1172. [PMID: 35414979 PMCID: PMC8973179 DOI: 10.1364/boe.445370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
We carried out a systematic study on cross-polarized diffraction image (p-DI) pairs of 3098 mature red blood cells (RBCs) using optical cell models with varied morphology, refractive index (RI), and orientation. The influence of cell rotation on texture features of p-DI pairs characterized by the gray-level co-occurrence matrix (GLCM) algorithm was quantitatively analyzed. Correlations between the transverse diameters of RBCs with different RI values and scattering efficiency ratios of s- and p-polarized light were also investigated. The correlations remain strong even for RBCs with significant orientation variations. In addition, we applied a minimum redundancy maximum relevance (mRMR) algorithm to improve the performance of support vector machine (SVM) classifiers. It was demonstrated that a set of selected GLCM parameters allowed for an efficient solution of classification problems of RBCs based on morphology. For 1598 RBCs with varied shapes corresponding to normal or pathological cases, the accuracy of the SVM based classifications increased from 83.8% to 96.8% with the aid of mRMR. These results indicate the strong potential of p-DI data for rapid and accurate screening examinations of RGC shapes in routine clinical tests.
Collapse
Affiliation(s)
- Wenjin Wang
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
- School of Physics & Electronics Science and Technology, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
| | - Li Min
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
- School of Physics & Electronics Science and Technology, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
| | - Peng Tian
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
- School of Physics & Electronics Science and Technology, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
| | - Chao Wu
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
- Intelligent Manufacturing Research Institute, South-Central University for Nationalities, Wuhan, Hubei 430074, China
| | - Jing Liu
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
- School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
| | - Xin-Hua Hu
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
- Department of Physics, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
3
|
Zhao L, Tang L, Greene MS, Sa Y, Wang W, Jin J, Hong H, Lu JQ, Hu XH. Deep Learning of Morphologic Correlations To Accurately Classify CD4+ and CD8+ T Cells by Diffraction Imaging Flow Cytometry. Anal Chem 2022; 94:1567-1574. [DOI: 10.1021/acs.analchem.1c03337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lin Zhao
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
- Department of Physics, East Carolina University, Greenville, North Carolina 27858, United States
- School of Information Science & Technology, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
| | - Liwen Tang
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
- School of Information Science & Technology, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
| | - Marion S. Greene
- Department of Physics, East Carolina University, Greenville, North Carolina 27858, United States
| | - Yu Sa
- Department of Biomedical Engineering, Tianjin University, Tianjin 300072, China
| | - Wenjin Wang
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
- School of Physics & Electronic Science, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
| | - Jiahong Jin
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
- Department of Physics, East Carolina University, Greenville, North Carolina 27858, United States
- School of Physics & Electronic Science, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
| | - Heng Hong
- Department of Pathology and Comparative Medicine, Wake Forest School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Jun Q. Lu
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
- Department of Physics, East Carolina University, Greenville, North Carolina 27858, United States
| | - Xin-Hua Hu
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
- Department of Physics, East Carolina University, Greenville, North Carolina 27858, United States
| |
Collapse
|
4
|
Travassos IO, Mello-Andrade F, Caldeira RP, Pires WC, da Silva PFF, Correa RS, Teixeira T, Martins-Oliveira A, Batista AA, de Silveira-Lacerda EP. Ruthenium (II)/allopurinol complex inhibits breast cancer progression via multiple targets. J Biol Inorg Chem 2021; 26:385-401. [PMID: 33837856 DOI: 10.1007/s00775-021-01862-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/08/2021] [Indexed: 12/27/2022]
Abstract
Metal complexes based on ruthenium have established excellent activity with less toxicity and great selectivity for tumor cells. This study aims to assess the anticancer potential of ruthenium(II)/allopurinol complexes called [RuCl2(allo)2(PPh3)2] (1) and [RuCl2(allo)2(dppb)] (2), where allo means allopurinol, PPh3 is triphenylphosphine and dppb, 1,4-bis(diphenylphosphino)butane. The complexes were synthesized and characterized by elemental analysis, IR, UV-Vis and NMR spectroscopies, cyclic voltammetry, molar conductance measurements, as well as the X-ray crystallographic analysis of complex 2. The antitumor effects of compounds were determined by cytotoxic activity and cellular and molecular responses to cell death mechanisms. Complex 2 showed good antitumor profile prospects because in addition to its cytotoxicity, it causes cell cycle arrest, induction of DNA damage, morphological and biochemical alterations in the cells. Moreover, complex 2 induces cell death by p53-mediated apoptosis, caspase activation, increased Beclin-1 levels and decreased ROS levels. Therefore, complex 2 can be considered a suitable compound in antitumor treatment due to its cytotoxic mechanism.
Collapse
Affiliation(s)
- Ingrid O Travassos
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil
| | - Francyelli Mello-Andrade
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil.,Department of Chemistry, Federal Institute of Education, Science and Technology of Goiás, Goiânia, Goiás, 74055-110, Brazil
| | - Raíssa P Caldeira
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil
| | - Wanessa C Pires
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil
| | - Paula F F da Silva
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil
| | - Rodrigo S Correa
- Department of Chemistry, Federal University of Ouro Preto-UFOP, Ouro Preto, MG, 35400-000, Brazil
| | - Tamara Teixeira
- Department of Chemistry, Federal University of Ouro Preto-UFOP, Ouro Preto, MG, 35400-000, Brazil
| | | | - Alzir A Batista
- Department of Chemistry, Federal University of Sao Carlos-UFSCar, Sao Carlos, SP, 13565-905, Brazil
| | - Elisângela P de Silveira-Lacerda
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil.
| |
Collapse
|
5
|
Liu J, Xu Y, Wang W, Wen Y, Hong H, Lu JQ, Tian P, Hu XH. Machine learning of diffraction image patterns for accurate classification of cells modeled with different nuclear sizes. JOURNAL OF BIOPHOTONICS 2020; 13:e202000036. [PMID: 32506803 DOI: 10.1002/jbio.202000036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/17/2020] [Accepted: 05/31/2020] [Indexed: 05/25/2023]
Abstract
Measurement of nuclear-to-cytoplasm (N:C) ratios plays an important role in detection of atypical and tumor cells. Yet, current clinical methods rely heavily on immunofluroescent staining and manual reading. To achieve the goal of rapid and label-free cell classification, realistic optical cell models (OCMs) have been developed for simulation of diffraction imaging by single cells. A total of 1892 OCMs were obtained with varied nuclear volumes and orientations to calculate cross-polarized diffraction image (p-DI) pairs divided into three nuclear size groups of OCMS , OCMO and OCML based on three prostate cell structures. Binary classifications were conducted among the three groups with image parameters extracted by the algorithm of gray-level co-occurrence matrix. The averaged accuracy of support vector machine (SVM) classifier on test dataset of p-DI was found to be 98.8% and 97.5% respectively for binary classifications of OCMS vs OCMO and OCMO vs OCML for the prostate cancer cell structure. The values remain about the same at 98.9% and 97.8% for the smaller prostate normal cell structures. The robust performance of SVM over clustering classifiers suggests that the high-order correlations of diffraction patterns are potentially useful for label-free detection of single cells with large N:C ratios.
Collapse
Affiliation(s)
- Jing Liu
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan, China
- School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan, China
| | - Yaohui Xu
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan, China
- School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan, China
| | - Wenjin Wang
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan, China
- School of Physics & Electronic Science, Hunan Institute of Science and Technology, Yueyang, Hunan, China
| | - Yuhua Wen
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan, China
- School of Physics & Electronic Science, Hunan Institute of Science and Technology, Yueyang, Hunan, China
| | - Heng Hong
- Department of Pathology and Comparative Medicine, Wake Forest School of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Jun Q Lu
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan, China
- Department of Physics, East Carolina University, Greenville, North Carolina, USA
| | - Peng Tian
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan, China
- School of Physics & Electronic Science, Hunan Institute of Science and Technology, Yueyang, Hunan, China
| | - Xin-Hua Hu
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan, China
- Department of Physics, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
6
|
Wang S, Liu J, Lu JQ, Wang W, Al-Qaysi SA, Xu Y, Jiang W, Hu XH. Development and evaluation of realistic optical cell models for rapid and label-free cell assay by diffraction imaging. JOURNAL OF BIOPHOTONICS 2019; 12:e201800287. [PMID: 30447049 DOI: 10.1002/jbio.201800287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
Methods for rapid and label-free cell assay are highly desired in life science. Single-shot diffraction imaging presents strong potentials to achieve this goal as evidenced by past experimental results using methods such as polarization diffraction imaging flow cytometry. We present here a platform of methods toward solving these problems and results of optical cell model (OCM) evaluations by calculations and analysis of cross-polarized diffraction image (p-DI) pairs. Four types of realistic OCMs have been developed with two prostate cell structures and adjustable refractive index (RI) parameters to investigate the effects of cell morphology and index distribution on calculated p-DI pairs. Image patterns have been characterized by a gray-level co-occurrence matrix (GLCM) algorithm and four GLCM parameters and linear depolarization ratio δL have been selected to compare calculated against measured data of prostate cells. Our results show that the irregular shapes of and heterogeneity in RI distributions for organelles play significant roles in the spatial distribution of scattered light by cells in comparison to the average RI values and their differences among the organelles. Discrepancies in GLCM and δL parameters between calculated and measured p-DI data provide useful insight for understanding light scattering by single cells and improving OCM.
Collapse
Affiliation(s)
- Shuting Wang
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan, China
- School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan, China
| | - Jing Liu
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan, China
- School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan, China
| | - Jun Q Lu
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan, China
- Department of Physics, East Carolina University, Greenville, North Carolina
| | - Wenjin Wang
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan, China
- School of Physics and Electronic Science, Hunan Institute of Science and Technology, Yueyang, Hunan, China
| | - Safaa A Al-Qaysi
- Department of Physics, East Carolina University, Greenville, North Carolina
- College of Pharmacy, Al-Mustansiriya University, Baghdad, Iraq
| | - Yaohui Xu
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan, China
- School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan, China
| | - Wenhuan Jiang
- Department of Physics, East Carolina University, Greenville, North Carolina
| | - Xin-Hua Hu
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan, China
- Department of Physics, East Carolina University, Greenville, North Carolina
| |
Collapse
|
7
|
Mugnano M, Memmolo P, Miccio L, Grilli S, Merola F, Calabuig A, Bramanti A, Mazzon E, Ferraro P. In vitro cytotoxicity evaluation of cadmium by label-free holographic microscopy. JOURNAL OF BIOPHOTONICS 2018; 11:e201800099. [PMID: 30079614 DOI: 10.1002/jbio.201800099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/17/2018] [Accepted: 08/01/2018] [Indexed: 05/04/2023]
Abstract
Among all environmental pollutants, the toxic heavy metal cadmium is considered as a human carcinogen. Cadmium may induce cell death by apoptosis in various cell types, although the underlying mechanisms are still unclear. In this paper we show how a label-free digital holography (DH)-based technique is able to quantify the evolution of key biophysical parameters of cells during the exposure to cadmium for the first time. Murine embryonic fibroblasts NIH 3T3 are chosen here as cellular model for studying the cadmium effects. The results demonstrate that DH is able to retrieve the temporal evolution of different key parameters such as cell volume, projected area, cell thickness and dry mass, thus providing a full quantitative characterization of the cell physical behaviour during cadmium exposure. Our results show that the label-free character of the technique would allow biologists to perform systematic and reliable studies on cell death process induced by cadmium and we believe that more in general this can be easily extended to others heavy metals, thus avoiding the time-consuming, expensive and invasive label-based procedures used nowadays in the field. In fact, pollution by heavy metals is severe issue that needs rapid and reliable methods to be settled.
Collapse
Affiliation(s)
- Martina Mugnano
- Department of Physical Sciences and Technologies of Matter (DSFTM), CNR, Institute of Applied Science & Intelligent Systems (CNR-ISASI), Pozzuoli, Italy
| | - Pasquale Memmolo
- Department of Physical Sciences and Technologies of Matter (DSFTM), CNR, Institute of Applied Science & Intelligent Systems (CNR-ISASI), Pozzuoli, Italy
| | - Lisa Miccio
- Department of Physical Sciences and Technologies of Matter (DSFTM), CNR, Institute of Applied Science & Intelligent Systems (CNR-ISASI), Pozzuoli, Italy
| | - Simonetta Grilli
- Department of Physical Sciences and Technologies of Matter (DSFTM), CNR, Institute of Applied Science & Intelligent Systems (CNR-ISASI), Pozzuoli, Italy
| | - Francesco Merola
- Department of Physical Sciences and Technologies of Matter (DSFTM), CNR, Institute of Applied Science & Intelligent Systems (CNR-ISASI), Pozzuoli, Italy
| | - Alejandro Calabuig
- Department of Physical Sciences and Technologies of Matter (DSFTM), CNR, Institute of Applied Science & Intelligent Systems (CNR-ISASI), Pozzuoli, Italy
| | - Alessia Bramanti
- Department of Physical Sciences and Technologies of Matter (DSFTM), CNR, Institute of Applied Science & Intelligent Systems (CNR-ISASI), Pozzuoli, Italy
- Department of Physical Sciences and Technologies of Matter (DSFTM), IRCCS Centre for Neuroscience Bonino-Pulejo, Messina, Italy
| | - Emanuela Mazzon
- Department of Physical Sciences and Technologies of Matter (DSFTM), IRCCS Centre for Neuroscience Bonino-Pulejo, Messina, Italy
| | - Pietro Ferraro
- Department of Physical Sciences and Technologies of Matter (DSFTM), CNR, Institute of Applied Science & Intelligent Systems (CNR-ISASI), Pozzuoli, Italy
| |
Collapse
|
8
|
Feng J, Feng T, Yang C, Wang W, Sa Y, Feng Y. Feasibility study of stain-free classification of cell apoptosis based on diffraction imaging flow cytometry and supervised machine learning techniques. Apoptosis 2018; 23:290-298. [DOI: 10.1007/s10495-018-1454-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Quantitative analysis and comparison of 3D morphology between viable and apoptotic MCF-7 breast cancer cells and characterization of nuclear fragmentation. PLoS One 2017; 12:e0184726. [PMID: 28886199 PMCID: PMC5590996 DOI: 10.1371/journal.pone.0184726] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/22/2017] [Indexed: 01/25/2023] Open
Abstract
Morphological changes in apoptotic cells provide essential markers for defining and detection of apoptosis as a fundamental mechanism of cell death. Among these changes, the nuclear fragmentation and condensation have been regarded as the important markers but quantitative characterization of these changes is yet to be achieved. We have acquired confocal image stacks of 206 viable and apoptotic MCF-7 cells stained by three fluorescent dyes. Three-dimensional (3D) parameters were extracted to quantify and compare their differences in morphology. To analyze nuclear fragmentation, a new method has been developed to determine clustering of nuclear voxels in the reconstructed cells due to fluorescence intensity changes in nuclei of apoptotic cells. The results of these studies reveal that the 3D morphological changes in cytoplasm and nuclear membranes in apoptotic cells provide sensitive targets for label-free detection and staging of apoptosis. Furthermore, the clustering analysis and morphological data on nuclear fragmentation are highly useful for derivation of optical cell models and simulation of diffraction images to investigate light scattering by early apoptotic cells, which can lead to future development of label-free and rapid methods of apoptosis assay based on cell morphology.
Collapse
|
10
|
Calabuig A, Mugnano M, Miccio L, Grilli S, Ferraro P. Investigating fibroblast cells under "safe" and "injurious" blue-light exposure by holographic microscopy. JOURNAL OF BIOPHOTONICS 2017; 10:919-927. [PMID: 27088256 DOI: 10.1002/jbio.201500340] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/26/2016] [Accepted: 03/18/2016] [Indexed: 05/26/2023]
Abstract
The exposure to visible light has been shown to exert various biological effects, such as erythema and retinal degeneration. However, the phototoxicity mechanisms in living cells are still not well understood. Here we report a study on the temporal evolution of cell morphology and volume during blue light exposure. Blue laser irradiation is switched during the operation of a digital holography (DH) microscope between what we call here "safe" and "injurious" exposure (SE & IE). The results reveal a behaviour that is typical of necrotic cells, with early swelling and successive leakage of the intracellular liquids when the laser is set in the "injurious" operation. In the phototoxicity investigation reported here the light dose modulation is performed through the very same laser light source adopted for monitoring the cell's behaviour by digital holographic microscope. We believe the approach may open the route to a deep investigation of light-cell interactions, with information about death pathways and threshold conditions between healthy and damaged cells when subjected to light-exposure. 3D Morphology and quantitative phase information from late stage of necrosis cell death.
Collapse
Affiliation(s)
- Alejandro Calabuig
- National Council of Research, Institute of Applied Science & Intelligent Systems (ISASI) 'E. Caianiello', Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, P. le Tecchio 80, 80125, Napoli, Italy
| | - Martina Mugnano
- National Council of Research, Institute of Applied Science & Intelligent Systems (ISASI) 'E. Caianiello', Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, P. le Tecchio 80, 80125, Napoli, Italy
| | - Lisa Miccio
- National Council of Research, Institute of Applied Science & Intelligent Systems (ISASI) 'E. Caianiello', Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy
| | - Simonetta Grilli
- National Council of Research, Institute of Applied Science & Intelligent Systems (ISASI) 'E. Caianiello', Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy
| | - Pietro Ferraro
- National Council of Research, Institute of Applied Science & Intelligent Systems (ISASI) 'E. Caianiello', Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy
| |
Collapse
|
11
|
Qi D, Feng J, Yang C, Jin C, Sa Y, Feng Y. Original Research: Label-free detection for radiation-induced apoptosis in glioblastoma cells. Exp Biol Med (Maywood) 2016; 241:1751-6. [PMID: 27190270 DOI: 10.1177/1535370216648024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 04/12/2016] [Indexed: 11/15/2022] Open
Abstract
Current flow cytometry (FCM) requires fluorescent dyes labeling cells which make the procedure costly and time consuming. This manuscript reports a feasibility study of detecting the cell apoptosis with a label-free method in glioblastoma cells. A human glioma cell line M059K was exposed to 8 Gy dose of radiation, which enables the cells to undergo radiation-induced apoptosis. The rates of apoptosis were studied at different time points post-irradiation with two different methods: FCM in combination with Annexin V-FITC/PI staining and a newly developed technique named polarization diffraction imaging flow cytometry. Totally 1000 diffraction images were acquired for each sample and the gray level co-occurrence matrix (GLCM) algorithm was used in morphological characterization of the apoptotic cells. Among the feature parameters extracted from each image pair, we found that the two GLCM parameters of angular second moment (ASM) and sum entropy (SumEnt) exhibit high sensitivities and consistencies as the apoptotic rates (Pa) measured with FCM method. In addition, no significant difference exists between Pa and ASM_S, Pa and SumEnt_S, respectively (P > 0.05). These results demonstrated that the new label-free method can detect cell apoptosis effectively. Cells can be directly used in the subsequent biochemical experiments as the structure and function of cells and biomolecules are well-preserved with this new method.
Collapse
Affiliation(s)
- Dandan Qi
- Department of Biomedical Engineering, Tianjin University, Tianjin 300072, China
| | - Jingwen Feng
- Department of Biomedical Engineering, Tianjin University, Tianjin 300072, China
| | - Chengwen Yang
- Department of Biomedical Engineering, Tianjin University, Tianjin 300072, China Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Changrong Jin
- Department of Biomedical Engineering, Tianjin University, Tianjin 300072, China
| | - Yu Sa
- Department of Biomedical Engineering, Tianjin University, Tianjin 300072, China
| | - Yuanming Feng
- Department of Biomedical Engineering, Tianjin University, Tianjin 300072, China Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China Department of Radiation Oncology, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|