Abstract
![]()
Development
of novel imaging probes for cancer diagnostics remains
critical for early detection of disease, yet most imaging agents are
hindered by suboptimal tumor accumulation. To overcome these limitations,
researchers have adapted antibodies for imaging purposes. As cancerous
malignancies express atypical patterns of cell surface proteins in
comparison to noncancerous tissues, novel antibody-based imaging agents
can be constructed to target individual cancer cells or surrounding
vasculature. Using molecular imaging techniques, these agents may
be utilized for detection of malignancies and monitoring of therapeutic
response. Currently, there are several imaging modalities commonly
employed for molecular imaging. These imaging modalities include positron
emission tomography (PET), single-photon emission computed tomography
(SPECT), magnetic resonance (MR) imaging, optical imaging (fluorescence
and bioluminescence), and photoacoustic (PA) imaging. While antibody-based
imaging agents may be employed for a broad range of diseases, this
review focuses on the molecular imaging of pancreatic cancer, as there
are limited resources for imaging and treatment of pancreatic malignancies.
Additionally, pancreatic cancer remains the most lethal cancer with
an overall 5-year survival rate of approximately 7%, despite significant
advances in the imaging and treatment of many other cancers. In this
review, we discuss recent advances in molecular imaging of pancreatic
cancer using antibody-based imaging agents. This task is accomplished
by summarizing the current progress in each type of molecular imaging
modality described above. Also, several considerations for designing
and synthesizing novel antibody-based imaging agents are discussed.
Lastly, the future directions of antibody-based imaging agents are
discussed, emphasizing the potential applications for personalized
medicine.
Collapse