1
|
Detection of subtle cartilage and bone tissue degeneration in the equine joint using polarisation-sensitive optical coherence tomography. Osteoarthritis Cartilage 2022; 30:1234-1243. [PMID: 35714759 DOI: 10.1016/j.joca.2022.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To explore the ability of polarisation-sensitive optical coherence tomography (PS-OCT) to rapidly identify subtle signs of tissue degeneration in the equine joint. METHOD Polarisation-sensitive optical coherence tomography (PS-OCT) images were systematically acquired in four locations along the medial and lateral condyles of the third metacarpal bone in five dissected equine specimens. Intensity and retardation PS-OCT images, and anomalies observed therein, were then compared and validated with high resolution images of the tissue sections obtained using Differential Interference contrast (DIC) optical light microscopy. RESULTS The PS-OCT system was capable of imaging the entire equine osteochondral unit, and allowed delineation of the three structurally differentiated zones of the joint, that is, the articular cartilage matrix, zone of calcified cartilage and underlying subchondral bone. Importantly, PS-OCT imaging was able to detect underlying matrix and bone changes not visible without dissection and/or microscopy. CONCLUSION PS-OCT has substantial potential to detect, non-invasively, sub-surface microstructural changes that are known to be associated with the early stages of joint tissue degeneration.
Collapse
|
2
|
Zhou X, Eltit F, Yang X, Maloufi S, Alousaimi H, Liu Q, Huang L, Wang R, Tang S. Detecting human articular cartilage degeneration in its early stage with polarization-sensitive optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2020; 11:2745-2760. [PMID: 32499957 DOI: 10.1364/boe.387242] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 02/05/2023]
Abstract
Detecting articular cartilage (AC) degeneration in its early stage plays a critical role in the diagnosis and treatment of osteoarthritis (OA). Polarization-sensitive optical coherence tomography (PS-OCT) is sensitive to the alteration and disruption of collagen organization that happens during OA progression. This study proposes an effective OA evaluating method based on PS-OCT imaging. A slope-based analysis is applied on the phase retardation images to segment articular cartilage into three zones along the depth direction. The boundaries and birefringence coefficients (BRCs) of each zone are quantified. Two parameters, namely phase homogeneity index (PHI) and zonal distinguishability (Dz), are further developed to quantify the fluctuation within each zone and the zone-to-zone variation of the tissue birefringence properties. The PS-OCT based evaluating method then combines PHI and Dz to provide a G PS score for the severity of OA. The proposed method is applied to human hip joint samples and the results are compared with the grading by histology images. The G PS score shows very strong statistical significance in differentiating different stages of OA. Compared to using the BRC of each zone or a single BRC for the entire depth, the G PS score shows great improvement in differentiating early-stage OA. The proposed method is shown to have great potential to be developed as a clinical tool for detecting OA.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6 T 1Z4, Canada
| | - Felipe Eltit
- Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xiao Yang
- Huaxi MR Research Center, Department of Radiology, West China Hospital and West China School of Medicine, Sichuan University, Chengdu 610041, China.,College of Polymer Science and Engineering, State Key laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Sina Maloufi
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6 T 1Z4, Canada
| | - Hanadi Alousaimi
- Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Qihao Liu
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6 T 1Z4, Canada
| | - Lin Huang
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6 T 1Z4, Canada
| | - Rizhi Wang
- Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.,Department of Materials Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Shuo Tang
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6 T 1Z4, Canada
| |
Collapse
|
3
|
Ylitalo T, Finnilä MA, Gahunia HK, Karhula SS, Suhonen H, Valkealahti M, Lehenkari P, Hæggström E, Pritzker KP, Saarakkala S, Nieminen HJ. Quantifying Complex Micro-Topography of Degenerated Articular Cartilage Surface by Contrast-Enhanced Micro-Computed Tomography and Parametric Analyses. J Orthop Res 2019; 37:855-866. [PMID: 30737811 PMCID: PMC6518937 DOI: 10.1002/jor.24245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 01/29/2019] [Indexed: 02/04/2023]
Abstract
One of the earliest changes in osteoarthritis (OA) is a surface discontinuity of the articular cartilage (AC), and these surface changes become gradually more complex with OA progression. We recently developed a contrast enhanced micro-computed tomography (μCT) method for visualizing AC surface in detail. The present study aims to introduce a μCT analysis technique to parameterize these complex AC surface features and to demonstrate the feasibility of using these parameters to quantify degenerated AC surface. Osteochondral plugs (n = 35) extracted from 19 patients undergoing joint surgery were stained with phosphotungstic acid and imaged using μCT. The surface micro-topography of AC was analyzed with developed method. Standard root mean square roughness (Rq ) was calculated as a reference, and the Area Under Curve (AUC) for receiver operating characteristic analysis was used to compare the acquired quantitative parameters with semi-quantitative visual grading of μCT image stacks. The parameters quantifying the complex micro-topography of AC surface exhibited good sensitivity and specificity in identifying surface continuity (AUC: 0.93, [0.80 0.99]), fissures (AUC: 0.94, [0.83 0.99]) and fibrillation (AUC: 0.98, [0.88 1.0]). Standard Rq was significantly smaller compared with the complex roughness (CRq ) already with mild surface changes with all surface reference parameters - continuity, fibrillation, and fissure sum. Furthermore, only CRq showed a significant difference when comparing the intact surface with lowest fissure sum score. These results indicate that the presented method for evaluating complex AC surfaces exhibit potential to identify early OA changes in superficial AC and is dynamic throughout OA progression. © 2019 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. Society. 9999:1-12, 2019.
Collapse
Affiliation(s)
- Tuomo Ylitalo
- Research Unit of Medical Imaging, Physics and Technology, Faculty of MedicineUniversity of OuluOuluFinland,Department of PhysicsUniversity of HelsinkiHelsinkiFinland
| | - Mikko A.J. Finnilä
- Research Unit of Medical Imaging, Physics and Technology, Faculty of MedicineUniversity of OuluOuluFinland,Department of Applied Physics University of Eastern FinlandKuopioFinland,Medical Research Center OuluOulu University Hospital and University of OuluOuluFinland
| | | | - Sakari S. Karhula
- Research Unit of Medical Imaging, Physics and Technology, Faculty of MedicineUniversity of OuluOuluFinland,Infotech OuluUniversity of OuluOuluFinland
| | - Heikki Suhonen
- Department of PhysicsUniversity of HelsinkiHelsinkiFinland
| | - Maarit Valkealahti
- Department of Surgery and Intensive CareUniversity of Oulu and Oulu University HospitalOuluFinland
| | - Petri Lehenkari
- Medical Research Center OuluOulu University Hospital and University of OuluOuluFinland,Department of Surgery and Intensive CareUniversity of Oulu and Oulu University HospitalOuluFinland,Institute of Cancer Research and Translational Medicine, Department of Anatomy and Cell Biology, Faculty of MedicineUniversity of OuluOuluFinland
| | | | - Kenneth P.H. Pritzker
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoCanada,Mount Sinai HospitalTorontoCanada
| | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, Faculty of MedicineUniversity of OuluOuluFinland,Infotech OuluUniversity of OuluOuluFinland,Department of Diagnostic RadiologyOulu University HospitalOuluFinland
| | - Heikki J. Nieminen
- Research Unit of Medical Imaging, Physics and Technology, Faculty of MedicineUniversity of OuluOuluFinland,Department of PhysicsUniversity of HelsinkiHelsinkiFinland,Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoCanada,Department of Neuroscience and Biomedical EngineeringAalto UniversityEspooFinland
| |
Collapse
|
4
|
Michalik R, Pauer T, Brill N, Knobe M, Tingart M, Jahr H, Truhn D, Nebelung S. Quantitative articular cartilage sub-surface defect assessment using optical coherence tomography: An in-vitro study. Ann Anat 2019; 221:125-134. [DOI: 10.1016/j.aanat.2018.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 09/20/2018] [Accepted: 10/01/2018] [Indexed: 12/15/2022]
|
5
|
Quantifying birefringence in the bovine model of early osteoarthritis using polarisation-sensitive optical coherence tomography and mechanical indentation. Sci Rep 2018; 8:8568. [PMID: 29872079 PMCID: PMC5988768 DOI: 10.1038/s41598-018-25982-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/24/2018] [Indexed: 01/14/2023] Open
Abstract
Recent studies have shown potential for using polarisation sensitive optical coherence tomography (PS-OCT) to study cartilage morphology, and to be potentially used as an in vivo, non-invasive tool for detecting osteoarthritic changes. However, there has been relatively limited ability of this method to quantify the subtle changes that occur in the early stages of cartilage degeneration. An established mechanical indenting technique that has previously been used to examine the microstructural response of articular cartilage was employed to fix the bovine samples in an indented state. The samples were subject to creep loading with a constant compressive stress of 4.5 MPa and, when imaged using PS-OCT, enabled birefringent banding patterns to be observed. The magnitude of the birefringence was quantified using the birefringence coefficient (BRC) and statistical analysis revealed that PS-OCT is able to detect and quantify significant changes between healthy and early osteoarthritic cartilage (p < 0.001). This presents a novel utilization of PS-OCT for future development as an in vivo assessment tool.
Collapse
|
6
|
Pailhé R, Mounier A, Boisson B, Rouchy RC, Voros S, Chipon E, Boudry I, Medici M, Hughes C, Moreau-Gaudry A. Qualitative and quantitative assessment of cartilage degeneration using full-field optical coherence tomography ex vivo. Osteoarthritis Cartilage 2018; 26:285-292. [PMID: 29162490 DOI: 10.1016/j.joca.2017.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 10/17/2017] [Accepted: 11/11/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The purpose of this study was to investigate the ability of full-field optical coherence tomography (FFOCT) to qualitatively and quantitatively evaluate cartilage degeneration using the qualitative evaluation of histology sections as the reference. DESIGN Thirty-three human knee cartilage samples of variable degeneration were included in the study. A closely matching histology and FFOCT image was acquired for each sample. The cartilage degeneration was qualitatively evaluated by assigning a grade to each histology and FFOCT image. The relevance of the performed grading was assessed by calculating the intra- and inter-observer reproducibility and calculating the concordance between the histology and FFOCT grades. A near-automatic algorithm was developed to quantitatively characterize the cartilage surface in each image. The correlation between the quantitative results and the reference qualitative histology was calculated. RESULTS An almost perfect agreement was achieved for both the intra- and inter-reproducibility of the histology and FFOCT qualitative grading (κ ≥ 0.91). A high and statistically significant level of agreement was measured between the histology and FFOCT grades (W = 0.95, P < 0.05). Strong and statistically significant correlations were measured between the quantitative results and the reference qualitative histology grades (ρ ≥ 0.75, P < 0.05). CONCLUSIONS We have demonstrated that FFOCT is an alternative approach to conventional optical coherence tomography (OCT) that is as well adapted for the qualitative and quantitative assessment of human cartilage as the reference gold standard - histology. This study constitutes the first promising results towards developing a new diagnostic tool in the field of osteoarthritis.
Collapse
Affiliation(s)
- R Pailhé
- Université Grenoble-Alpes, CNRS, Grenoble INP, TIMC-IMAG, F-38000 Grenoble, France; CHU Grenoble-Alpes, South Teaching Hospital, Department of Orthopaedic Surgery and Sport Traumatology, F-38130 Echirolles, France; INSERM, CIC 1406, F-38000 Grenoble, France.
| | - A Mounier
- INSERM, CIC 1406, F-38000 Grenoble, France; CHU Grenoble-Alpes, Clinique Universitaire de Radiologie et Imagerie Médicale, F-38000 Grenoble, France; Université Grenoble-Alpes, CIC 1406, F-38000 Grenoble, France.
| | - B Boisson
- CHU Grenoble-Alpes, Département d'Anatomie et de Cytologie Pathologiques, F-38000 Grenoble, France.
| | - R C Rouchy
- INSERM, CIC 1406, F-38000 Grenoble, France; CHU Grenoble-Alpes, Clinique Universitaire de Radiologie et Imagerie Médicale, F-38000 Grenoble, France; Université Grenoble-Alpes, CIC 1406, F-38000 Grenoble, France.
| | - S Voros
- Université Grenoble-Alpes, CNRS, Grenoble INP, TIMC-IMAG, F-38000 Grenoble, France; INSERM, TIMC-IMAG, F-38000 Grenoble, France.
| | - E Chipon
- INSERM, CIC 1406, F-38000 Grenoble, France; Université Grenoble-Alpes, CIC 1406, F-38000 Grenoble, France; CHU Grenoble-Alpes, Pôle Recherche, F-38000 Grenoble, France.
| | - I Boudry
- INSERM, CIC 1406, F-38000 Grenoble, France; Université Grenoble-Alpes, CIC 1406, F-38000 Grenoble, France; CHU Grenoble-Alpes, Pôle Recherche, F-38000 Grenoble, France.
| | - M Medici
- INSERM, CIC 1406, F-38000 Grenoble, France; Université Grenoble-Alpes, CIC 1406, F-38000 Grenoble, France; CHU Grenoble-Alpes, Pôle Recherche, F-38000 Grenoble, France.
| | - C Hughes
- Université Grenoble-Alpes, CNRS, Grenoble INP, TIMC-IMAG, F-38000 Grenoble, France; INSERM, CIC 1406, F-38000 Grenoble, France; CHU Grenoble-Alpes, Pôle Recherche, F-38000 Grenoble, France.
| | - A Moreau-Gaudry
- Université Grenoble-Alpes, CNRS, Grenoble INP, TIMC-IMAG, F-38000 Grenoble, France; INSERM, CIC 1406, F-38000 Grenoble, France; CHU Grenoble-Alpes, Pôle Recherche, F-38000 Grenoble, France; CHU Grenoble-Alpes, Pôle Santé Publique, F-38000 Grenoble, France.
| |
Collapse
|
7
|
Ravanfar M, Pfeiffer FM, Bozynski CC, Wang Y, Yao G. Parametric imaging of collagen structural changes in human osteoarthritic cartilage using optical polarization tractography. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-10. [PMID: 29197177 DOI: 10.1117/1.jbo.22.12.121708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/14/2017] [Indexed: 05/18/2023]
Abstract
Collagen degeneration is an important pathological feature of osteoarthritis. The purpose of this study is to investigate whether the polarization-sensitive optical coherence tomography (PSOCT)-based optical polarization tractography (OPT) can be useful in imaging collagen structural changes in human osteoarthritic cartilage samples. OPT eliminated the banding artifacts in conventional PSOCT by calculating the depth-resolved local birefringence and fiber orientation. A close comparison between OPT and PSOCT showed that OPT provided improved visualization and characterization of the zonal structure in human cartilage. Experimental results obtained in this study also underlined the importance of knowing the collagen fiber orientation in conventional polarized light microscopy assessment. In addition, parametric OPT imaging was achieved by quantifying the surface roughness, birefringence, and fiber dispersion in the superficial zone of the cartilage. These quantitative parametric images provided complementary information on the structural changes in cartilage, which can be useful for a comprehensive evaluation of collagen damage in osteoarthritic cartilage.
Collapse
Affiliation(s)
- Mohammadreza Ravanfar
- University of Missouri, Department of Bioengineering, Columbia, Missouri, United States
| | - Ferris M Pfeiffer
- University of Missouri, Department of Bioengineering, Columbia, Missouri, United States
- University of Missouri, Department of Orthopedic Surgery, Columbia, Missouri, United States
| | - Chantelle C Bozynski
- University of Missouri, Department of Orthopedic Surgery, Columbia, Missouri, United States
| | - Yuanbo Wang
- University of Missouri, Department of Bioengineering, Columbia, Missouri, United States
| | - Gang Yao
- University of Missouri, Department of Bioengineering, Columbia, Missouri, United States
| |
Collapse
|
8
|
Nebelung S, Rath B, Tingart M, Kuhl C, Schrading S. [Chondral and osteochondral defects : Representation by imaging methods]. DER ORTHOPADE 2017; 46:894-906. [PMID: 28936540 DOI: 10.1007/s00132-017-3472-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Morphological imaging of cartilage at high resolution allows the differentiation of chondral and osteochondral lesions. Nowadays, magnetic resonance imaging is the principal diagnostic tool in the assessment of cartilage structure and composition. Conventional radiography, computed tomography, ultrasound or optical coherence tomography are adjunct diagnostic modalities in the assessment of cartilage pathologies. The present article discusses the up-to-date diagnostic practice of cartilage imaging in terms of its scientific basis and current clinical status, requirements, techniques and image interpretation. Innovations in the field such as functional MRI are discussed as well due to their mid- to long-term clinical perspective.
Collapse
Affiliation(s)
- S Nebelung
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Aachen, Pauwelsstraße 30, 52074, Aachen, Deutschland
| | - B Rath
- Klinik für Orthopädie, Universitätsklinikum Aachen, Pauwelsstraße 30, 52074, Aachen, Deutschland
| | - M Tingart
- Klinik für Orthopädie, Universitätsklinikum Aachen, Pauwelsstraße 30, 52074, Aachen, Deutschland
| | - C Kuhl
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Aachen, Pauwelsstraße 30, 52074, Aachen, Deutschland
| | - S Schrading
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Aachen, Pauwelsstraße 30, 52074, Aachen, Deutschland.
| |
Collapse
|
9
|
Brill N, Wirtz M, Merhof D, Tingart M, Jahr H, Truhn D, Schmitt R, Nebelung S. Polarization-sensitive optical coherence tomography-based imaging, parameterization, and quantification of human cartilage degeneration. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:76013. [PMID: 27447953 DOI: 10.1117/1.jbo.21.7.076013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 07/06/2016] [Indexed: 05/18/2023]
Abstract
Polarization-sensitive optical coherence tomography (PS-OCT) is a light-based, high-resolution, real-time, noninvasive, and nondestructive imaging modality yielding quasimicroscopic cross-sectional images of cartilage. As yet, comprehensive parameterization and quantification of birefringence and tissue properties have not been performed on human cartilage. PS-OCT and algorithm-based image analysis were used to objectively grade human cartilage degeneration in terms of surface irregularity, tissue homogeneity, signal attenuation, as well as birefringence coefficient and band width, height, depth, and number. Degeneration-dependent changes were noted for the former three parameters exclusively, thereby questioning the diagnostic value of PS-OCT in the assessment of human cartilage degeneration.
Collapse
Affiliation(s)
- Nicolai Brill
- Fraunhofer Institute for Production Technology, Steinbachstraße 17, Aachen 52074, Germany
| | - Mathias Wirtz
- Fraunhofer Institute for Production Technology, Steinbachstraße 17, Aachen 52074, Germany
| | - Dorit Merhof
- RWTH Aachen University, Institute of Imaging and Computer Vision, Kopernikusstraße 16, Aachen 52074, Germany
| | - Markus Tingart
- Aachen University Hospital, Department of Orthopaedic Surgery, Pauwelsstraße 30, Aachen 52074, Germany
| | - Holger Jahr
- Aachen University Hospital, Department of Orthopaedic Surgery, Pauwelsstraße 30, Aachen 52074, Germany
| | - Daniel Truhn
- Aachen University Hospital, Department of Diagnostic and Interventional Radiology, Pauwelsstraße 30, Aachen 52074, Germany
| | - Robert Schmitt
- Fraunhofer Institute for Production Technology, Steinbachstraße 17, Aachen 52074, GermanyeRWTH Aachen University, Laboratory for Machine Tools and Production Engineering, Manfred-Weck Haus, Steinbachstraße 19, Aachen 52074, Germany
| | - Sven Nebelung
- Aachen University Hospital, Department of Diagnostic and Interventional Radiology, Pauwelsstraße 30, Aachen 52074, Germany
| |
Collapse
|
10
|
Brill N, Riedel J, Schmitt R, Tingart M, Truhn D, Pufe T, Jahr H, Nebelung S. 3D Human cartilage surface characterization by optical coherence tomography. Phys Med Biol 2016; 60:7747-62. [PMID: 26394374 DOI: 10.1088/0031-9155/60/19/7747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Early diagnosis and treatment of cartilage degeneration is of high clinical interest. Loss of surface integrity is considered one of the earliest and most reliable signs of degeneration, but cannot currently be evaluated objectively. Optical Coherence Tomography (OCT) is an arthroscopically available light-based non-destructive real-time imaging technology that allows imaging at micrometre resolutions to millimetre depths. As OCT-based surface evaluation standards remain to be defined, the present study investigated the diagnostic potential of 3D surface profile parameters in the comprehensive evaluation of cartilage degeneration. To this end, 45 cartilage samples of different degenerative grades were obtained from total knee replacements (2 males, 10 females; mean age 63.8 years), cut to standard size and imaged using a spectral-domain OCT device (Thorlabs, Germany). 3D OCT datasets of 8 × 8, 4 × 4 and 1 × 1 mm (width × length) were obtained and pre-processed (image adjustments, morphological filtering). Subsequent automated surface identification algorithms were used to obtain the 3D primary profiles, which were then filtered and processed using established algorithms employing ISO standards. The 3D surface profile thus obtained was used to calculate a set of 21 3D surface profile parameters, i.e. height (e.g. Sa), functional (e.g. Sk), hybrid (e.g. Sdq) and segmentation-related parameters (e.g. Spd). Samples underwent reference histological assessment according to the Degenerative Joint Disease classification. Statistical analyses included calculation of Spearman's rho and assessment of inter-group differences using the Kruskal Wallis test. Overall, the majority of 3D surface profile parameters revealed significant degeneration-dependent differences and correlations with the exception of severe end-stage degeneration and were of distinct diagnostic value in the assessment of surface integrity. None of the 3D surface profile parameters investigated were capable of reliably differentiating healthy from early-degenerative cartilage, while scan area sizes considerably affected parameter values. In conclusion, cartilage surface integrity may be adequately assessed by 3D surface profile parameters, which should be used in combination for the comprehensive and thorough evaluation and overall improved diagnostic performance. OCT- and image-based surface assessment could become a valuable adjunct tool to standard arthroscopy.
Collapse
|
11
|
Nebelung S, Brill N, Tingart M, Pufe T, Kuhl C, Jahr H, Truhn D. Quantitative OCT and MRI biomarkers for the differentiation of cartilage degeneration. Skeletal Radiol 2016; 45:505-16. [PMID: 26783011 DOI: 10.1007/s00256-016-2334-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To evaluate the usefulness of quantitative parameters obtained by optical coherence tomography (OCT) and magnetic resonance imaging (MRI) in the comprehensive assessment of human articular cartilage degeneration. MATERIALS AND METHODS Human osteochondral samples of variable degeneration (n = 45) were obtained from total knee replacements and assessed by MRI sequences measuring T1, T1ρ, T2 and T2* relaxivity and by OCT-based quantification of irregularity (OII, optical irregularity index), homogeneity (OHI, optical homogeneity index]) and attenuation (OAI, optical attenuation index]). Samples were also assessed macroscopically (Outerbridge classification) and histologically (Mankin classification) as grade-0 (Mankin scores 0-4)/grade-I (scores 5-8)/grade-II (scores 9-10)/grade-III (score 11-14). After data normalisation, differences between Mankin grades and correlations between imaging parameters were assessed using ANOVA and Tukey's post-hoc test and Spearman's correlation coefficients, respectively. Sensitivities and specificities in the detection of Mankin grade-0 were calculated. RESULTS Significant degeneration-related increases were found for T2 and OII and decreases for OAI, while T1, T1ρ, T2* or OHI did not reveal significant changes in relation to degeneration. A number of significant correlations between imaging parameters and histological (sub)scores were found, in particular for T2 and OII. Sensitivities and specificities in the detection of Mankin grade-0 were highest for OHI/T1 and OII/T1ρ, respectively. CONCLUSION Quantitative OCT and MRI techniques seem to complement each other in the comprehensive assessment of cartilage degeneration. Sufficiently large structural and compositional changes in the extracellular matrix may thus be parameterized and quantified, while the detection of early degeneration remains challenging.
Collapse
Affiliation(s)
- Sven Nebelung
- Department of Orthopaedics, Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany. .,Institute of Anatomy and Cell Biology, RWTH, Aachen, Germany.
| | - Nicolai Brill
- Fraunhofer Institute for Production Technology, Aachen, Germany
| | - Markus Tingart
- Department of Orthopaedics, Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Thomas Pufe
- Institute of Anatomy and Cell Biology, RWTH, Aachen, Germany
| | - Christiane Kuhl
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany
| | - Holger Jahr
- Department of Orthopaedics, Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany
| |
Collapse
|
12
|
Abstract
Osteoarthritis (OA) is the most common chronic disease of our joints, manifested by a dynamically increasing degeneration of hyaline articular cartilage (AC). While currently no therapy can reverse this process, the few available treatment options are hampered by the inability of early diagnosis. Loss of cartilage surface, or extracellular matrix (ECM), integrity is considered the earliest sign of OA. Despite the increasing number of imaging modalities surprisingly few imaging biomarkers exist. In this narrative review, recent developments in optical coherence tomography are critically evaluated for their potential to assess different aspects of AC quality as biomarkers of OA. Special attention is paid to imaging surface irregularities, ECM organization and the evaluation of posttraumatic injuries by light-based modalities.
Collapse
Affiliation(s)
- Holger Jahr
- a Department of Orthopaedic Surgery , University Hospital RWTH Aachen University , Aachen , Germany
| | - Nicolai Brill
- b Fraunhofer Institute for Production Technology , Aachen , Germany , and
| | - Sven Nebelung
- a Department of Orthopaedic Surgery , University Hospital RWTH Aachen University , Aachen , Germany .,c Department of Anatomy and Cell Biology , University Hospital RWTH Aachen University , Aachen , Germany
| |
Collapse
|
13
|
Banerjee S, Chatterjee S, Anura A, Chakrabarty J, Pal M, Ghosh B, Paul RR, Sheet D, Chatterjee J. Global spectral and local molecular connects for optical coherence tomography features to classify oral lesions towards unravelling quantitative imaging biomarkers. RSC Adv 2016. [DOI: 10.1039/c5ra24117k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The biopsy based diagnosis of oral precancers like leukoplakia (OLK) and submucous fibrosis (OSF) as well as squamous cell carcinoma (OSCC) suffers from observer specific variability.
Collapse
Affiliation(s)
- Satarupa Banerjee
- School of Medical Science and Technology
- Indian Institute of Technology
- Kharagpur
- India
| | - Swarnadip Chatterjee
- Advanced Technology Development Centre
- Indian Institute of Technology
- Kharagpur
- India
| | - Anji Anura
- School of Medical Science and Technology
- Indian Institute of Technology
- Kharagpur
- India
| | | | - Mousumi Pal
- Department of Oral and Maxillofacial Pathology
- Guru Nanak Institute of Dental Science and Research
- Kolkata
- India
| | - Bhaskar Ghosh
- Department of ENT & Head Neck Surgery
- Medical College
- Kolkata
- India
| | - Ranjan Rashmi Paul
- Department of Oral and Maxillofacial Pathology
- Guru Nanak Institute of Dental Science and Research
- Kolkata
- India
| | - Debdoot Sheet
- Department of Electrical Engineering
- Indian Institute of Technology
- Kharagpur
- India
| | - Jyotirmoy Chatterjee
- School of Medical Science and Technology
- Indian Institute of Technology
- Kharagpur
- India
| |
Collapse
|