1
|
Iványi GT, Nemes B, Gróf I, Fekete T, Kubacková J, Tomori Z, Bánó G, Vizsnyiczai G, Kelemen L. Optically Actuated Soft Microrobot Family for Single-Cell Manipulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401115. [PMID: 38814436 DOI: 10.1002/adma.202401115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/17/2024] [Indexed: 05/31/2024]
Abstract
Precisely controlled manipulation of nonadherent single cells is often a pre-requisite for their detailed investigation. Optical trapping provides a versatile means for positioning cells with submicrometer precision or measuring forces with femto-Newton resolution. A variant of the technique, called indirect optical trapping, enables single-cell manipulation with no photodamage and superior spatial control and stability by relying on optically trapped microtools biochemically bound to the cell. High-resolution 3D lithography enables to prepare such cell manipulators with any predefined shape, greatly extending the number of achievable manipulation tasks. Here, it is presented for the first time a novel family of cell manipulators that are deformable by optical tweezers and rely on their elasticity to hold cells. This provides a more straightforward approach to indirect optical trapping by avoiding biochemical functionalization for cell attachment, and consequently by enabling the manipulated cells to be released at any time. Using the photoresist Ormocomp, the deformations achievable with optical forces in the tens of pN range and present three modes of single-cell manipulation as examples to showcase the possible applications such soft microrobotic tools can offer are characterized. The applications describe here include cell collection, 3D cell imaging, and spatially and temporally controlled cell-cell interaction.
Collapse
Affiliation(s)
- Gergely T Iványi
- HUN-REN Biological Research Centre, Szeged Institute of Biophysics, Temesvári krt. 62, Szeged, 6726, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, 6720, Hungary
| | - Botond Nemes
- HUN-REN Biological Research Centre, Szeged Institute of Biophysics, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Ilona Gróf
- HUN-REN Biological Research Centre, Szeged Institute of Biophysics, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Tamás Fekete
- HUN-REN Biological Research Centre, Szeged Institute of Biophysics, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Jana Kubacková
- Department of Biophysics, Institute of Experimental Physics SAS, Watsonova 47, Košice, 04001, Slovakia
| | - Zoltán Tomori
- Department of Biophysics, Institute of Experimental Physics SAS, Watsonova 47, Košice, 04001, Slovakia
| | - Gregor Bánó
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, Košice, 04154, Slovakia
| | - Gaszton Vizsnyiczai
- HUN-REN Biological Research Centre, Szeged Institute of Biophysics, Temesvári krt. 62, Szeged, 6726, Hungary
- Department of Biotechnology, University of Szeged, Szeged, 6720, Hungary
| | - Lóránd Kelemen
- HUN-REN Biological Research Centre, Szeged Institute of Biophysics, Temesvári krt. 62, Szeged, 6726, Hungary
| |
Collapse
|
2
|
Gao Y, Wang X, Chen Y. Light-driven soft microrobots based on hydrogels and LCEs: development and prospects. RSC Adv 2024; 14:14278-14288. [PMID: 38694551 PMCID: PMC11062240 DOI: 10.1039/d4ra00495g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/08/2024] [Indexed: 05/04/2024] Open
Abstract
In the daily life of mankind, microrobots can respond to stimulations received and perform different functions, which can be used to complete repetitive or dangerous tasks. Magnetic driving works well in robots that are tens or hundreds of microns in size, but there are big challenges in driving microrobots that are just a few microns in size. Therefore, it is impossible to guarantee the precise drive of microrobots to perform tasks. Acoustic driven micro-nano robot can achieve non-invasive and on-demand movement, and the drive has good biological compatibility, but the drive mode has low resolution and requires expensive experimental equipment. Light-driven robots move by converting light energy into other forms of energy. Light is a renewable, powerful energy source that can be used to transmit energy. Due to the gradual maturity of beam modulation and optical microscope technology, the application of light-driven microrobots has gradually become widespread. Light as a kind of electromagnetic wave, we can change the energy of light by controlling the wavelength and intensity of light. Therefore, the light-driven robot has the advantages of programmable, wireless, high resolution and accurate spatio-temporal control. According to the types of robots, light-driven robots are subdivided into three categories, namely light-driven soft microrobots, photochemical microrobots and 3D printed hard polymer microrobots. In this paper, the driving materials, driving mechanisms and application scenarios of light-driven soft microrobots are reviewed, and their advantages and limitations are discussed. Finally, we prospected the field, pointed out the challenges faced by light-driven soft micro robots and proposed corresponding solutions.
Collapse
Affiliation(s)
- Yingnan Gao
- School of Electromechanical and Automotive Engineering, Yantai University Yantai 264005 China
| | - Xiaowen Wang
- School of Electromechanical and Automotive Engineering, Yantai University Yantai 264005 China
| | - Yibao Chen
- School of Electromechanical and Automotive Engineering, Yantai University Yantai 264005 China
| |
Collapse
|
3
|
Lin WC. MEMSbased Double-Stacked Tower Biosensor Array with Integrated Readout Circuitry for Detection of Salivary pH as a Diagnostic Biomarker Applied for Chronic Periodontal Disease. SENSORS (BASEL, SWITZERLAND) 2022; 22:8652. [PMID: 36433247 PMCID: PMC9693453 DOI: 10.3390/s22228652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
MEMS based 3D double stacked tower pixel biosensor 10 × 10 array with integration of readout circuit for detection of saliva pH ion is demonstrated. The pixel biosensor comprised a driving electrode, sensing electrode and double stack tower pixel structure. The sensitivity of double stacked tower biosensor can be auxiliary enhanced by proposed lower-jitter low dropout regulator circuit and dual offset cancellation comparator. The double stacked tower sensor is fabricated by MEMS backend-of-line CMOS process, it is compatible with CMOS frontend readout circuits and integrated as a system-on-chip (SoC). The double stacked tower pixel by MEMS process is to obtain a larger volume ratio of charge groups in a pixel of biosensor to enhance the sensitivity and linearity for ion detection. With the double stacked tower structure in biosensor, the sensitivity is improved by 31% than that of single tower structure proved by simulation. A wide-range linearity from pH 2.0 to pH 8.3, high sensitivity of -21 ADC counts/pH (or 212 mV/pH), response time of 5 s, repetition of 98.9%, and drift over time of 0.5 mV are achieved. Furthermore, the proposed biosensor was performed to confirm the artificial saliva from healthy gingiva, chronic gingivitis and chronic periodontitis, the measured ADC counts from proposed biosensor SoC was in consistent of that measured cyclic voltametric (CV) method very well. The proposed 3D double stack tower biosensor and readout circuit can be further integrated with internet-of-thing (IoT) device and NFC for data transmission for continuous pH sensing to facilitate the chronic gingiva disease health care at home.
Collapse
Affiliation(s)
- Wei-Cheng Lin
- Department of Electrical Engineering, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan 33302, Taiwan; ; Tel.: +886-3-211-8800 (ext. 3221); Fax: +886-211-8026
- Department of Trauma and Emergency, Linkou Chang Gung Memorial Hospital, Guishan Dist., Taoyuan 33305, Taiwan
| |
Collapse
|
4
|
Fekete T, Mészáros M, Szegletes Z, Vizsnyiczai G, Zimányi L, Deli MA, Veszelka S, Kelemen L. Optically Manipulated Microtools to Measure Adhesion of the Nanoparticle-Targeting Ligand Glutathione to Brain Endothelial Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39018-39029. [PMID: 34397215 DOI: 10.1021/acsami.1c08454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Targeting nanoparticles as drug delivery platforms is crucial to facilitate their cellular entry. Docking of nanoparticles by targeting ligands on cell membranes is the first step for the initiation of cellular uptake. As a model system, we studied brain microvascular endothelial cells, which form the anatomical basis of the blood-brain barrier, and the tripeptide glutathione, one of the most effective targeting ligands of nanoparticles to cross the blood-brain barrier. To investigate this initial docking step between glutathione and the membrane of living brain endothelial cells, we applied our recently developed innovative optical method. We present a microtool, with a task-specific geometry used as a probe, actuated by multifocus optical tweezers to characterize the adhesion probability and strength of glutathione-coated surfaces to the cell membrane of endothelial cells. The binding probability of the glutathione-coated surface and the adhesion force between the microtool and cell membrane was measured in a novel arrangement: cells were cultured on a vertical polymer wall and the mechanical forces were generated laterally and at the same time, perpendicularly to the plasma membrane. The adhesion force values were also determined with more conventional atomic force microscopy (AFM) measurements using functionalized colloidal probes. The optical trapping-based method was found to be suitable to measure very low adhesion forces (≤ 20 pN) without a high level of noise, which is characteristic for AFM measurements in this range. The holographic optical tweezers-directed functionalized microtools may help characterize the adhesion step of nanoparticles initiating transcytosis and select ligands to target nanoparticles.
Collapse
Affiliation(s)
- Tamás Fekete
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged 6726, Hungary
- Doctoral School in Multidisciplinary Medicine, University of Szeged, Szeged 6720, Hungary
| | - Mária Mészáros
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged 6726, Hungary
| | - Zsolt Szegletes
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged 6726, Hungary
| | - Gaszton Vizsnyiczai
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged 6726, Hungary
| | - László Zimányi
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged 6726, Hungary
| | - Mária A Deli
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged 6726, Hungary
| | - Szilvia Veszelka
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged 6726, Hungary
| | - Lóránd Kelemen
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged 6726, Hungary
| |
Collapse
|
5
|
Andrew PK, Raudsepp A, Fan D, Staufer U, Williams MAK, Avci E. Optical microlever assisted DNA stretching. OPTICS EXPRESS 2021; 29:25836-25847. [PMID: 34614903 DOI: 10.1364/oe.430465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Optical microrobotics is an emerging field that has the potential to improve upon current optical tweezer studies through avenues such as limiting the exposure of biological molecules of interest to laser radiation and overcoming the current limitations of low forces and unwanted interactions between nearby optical traps. However, optical microrobotics has been historically limited to rigid, single-body end-effectors rather than even simple machines, limiting the tasks that can be performed. Additionally, while multi-body machines such as microlevers exist in the literature, they have not yet been successfully demonstrated as tools for biological studies, such as molecule stretching. In this work we have taken a step towards moving the field forward by developing two types of microlever, produced using two-photon absorption polymerisation, to perform the first lever-assisted stretches of double-stranded DNA. The aim of the work is to provide a proof of concept for using optical micromachines for single molecule studies. Both styles of microlevers were successfully used to stretch single duplexes of DNA, and the results were analysed with the worm-like chain model to show that they were in good agreement.
Collapse
|
6
|
Cell nucleus as endogenous biological micropump. Biosens Bioelectron 2021; 182:113166. [PMID: 33774431 DOI: 10.1016/j.bios.2021.113166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 12/28/2022]
Abstract
Micropumps can generate directional microflows in blood vessels or bio-capillaries for targeted transport of nanoparticles and cells in vivo, which is highly significant for biomedical applications from active drug delivery to precision clinical therapy. Meanwhile, they have been extensively used in the biosensing fields with their unique features of autonomous motion, easy surface functionalization, dynamic capture and effective isolation of analytes in complex biological media. However, synthetic devices for actuating microflows, including pumps and motors, generally exhibit poor or limited biocompatibility with living organisms as a result of the invasive implantation of exogenous materials into blood vessels. Here we demonstrate a method of constructing endogenous micropumps by extracting nuclei from red blood cells, thus making them intrinsically and completely biocompatible. The nuclei are extracted and then driven by a scanning optical tweezing system. By a precise actuation of the microflows, nanoparticles and cells are navigated to target destinations, and the transport velocity and direction is controlled by the multifunctional dynamics of the micropumps. With the targeted transport of functionalized micro/nanoparticles followed by a dynamic mixing in microliter blood samples, the micropumps provide considerable promises to enhance the target binding efficiency and improve the sensitivity and speed of biological assays in vivo. Furthermore, multiplexing by simultaneously driving an array of multiple nuclei is demonstrated, thus confirming that the micropumps could provide a bio-friendly high-throughput in vivo platform for the treatment of blood diseases, microenvironment monitoring, and biomedical analysis.
Collapse
|
7
|
Golvari P, Kuebler SM. Fabrication of Functional Microdevices in SU-8 by Multi-Photon Lithography. MICROMACHINES 2021; 12:472. [PMID: 33919437 PMCID: PMC8143355 DOI: 10.3390/mi12050472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/19/2022]
Abstract
This review surveys advances in the fabrication of functional microdevices by multi-photon lithography (MPL) using the SU-8 material system. Microdevices created by MPL in SU-8 have been key to progress in the fields of micro-fluidics, micro-electromechanical systems (MEMS), micro-robotics, and photonics. The review discusses components, properties, and processing of SU-8 within the context of MPL. Emphasis is focused on advances within the last five years, but the discussion also includes relevant developments outside this period in MPL and the processing of SU-8. Novel methods for improving resolution of MPL using SU-8 and discussed, along with methods for functionalizing structures after fabrication.
Collapse
Affiliation(s)
- Pooria Golvari
- Chemistry Department, University of Central Florida, Orlando, FL 32816, USA;
| | - Stephen M. Kuebler
- Chemistry Department, University of Central Florida, Orlando, FL 32816, USA;
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL 32816, USA
- Department of Material Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
8
|
Grexa I, Fekete T, Molnár J, Molnár K, Vizsnyiczai G, Ormos P, Kelemen L. Single-Cell Elasticity Measurement with an Optically Actuated Microrobot. MICROMACHINES 2020; 11:mi11090882. [PMID: 32972024 PMCID: PMC7570390 DOI: 10.3390/mi11090882] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/15/2020] [Accepted: 09/20/2020] [Indexed: 02/07/2023]
Abstract
A cell elasticity measurement method is introduced that uses polymer microtools actuated by holographic optical tweezers. The microtools were prepared with two-photon polymerization. Their shape enables the approach of the cells in any lateral direction. In the presented case, endothelial cells grown on vertical polymer walls were probed by the tools in a lateral direction. The use of specially shaped microtools prevents the target cells from photodamage that may arise during optical trapping. The position of the tools was recorded simply with video microscopy and analyzed with image processing methods. We critically compare the resulting Young’s modulus values to those in the literature obtained by other methods. The application of optical tweezers extends the force range available for cell indentations measurements down to the fN regime. Our approach demonstrates a feasible alternative to the usual vertical indentation experiments.
Collapse
Affiliation(s)
- István Grexa
- Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (I.G.); (T.F.); (J.M.); (K.M.); (G.V.); (P.O.)
- Doctoral School of Interdisciplinary Medicine, University of Szeged, Korányi fasor 10, 6720 Szeged, Hungary
| | - Tamás Fekete
- Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (I.G.); (T.F.); (J.M.); (K.M.); (G.V.); (P.O.)
- Doctoral School of Multidisciplinary Medicine, Dóm tér 9, Hungary University of Szeged, 6720 Szeged, Hungary
| | - Judit Molnár
- Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (I.G.); (T.F.); (J.M.); (K.M.); (G.V.); (P.O.)
| | - Kinga Molnár
- Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (I.G.); (T.F.); (J.M.); (K.M.); (G.V.); (P.O.)
- Doctoral School of Theoretical Medicine, University of Szeged, Korányi fasor 10, 6720 Szeged, Hungary
| | - Gaszton Vizsnyiczai
- Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (I.G.); (T.F.); (J.M.); (K.M.); (G.V.); (P.O.)
| | - Pál Ormos
- Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (I.G.); (T.F.); (J.M.); (K.M.); (G.V.); (P.O.)
| | - Lóránd Kelemen
- Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (I.G.); (T.F.); (J.M.); (K.M.); (G.V.); (P.O.)
- Correspondence: ; Tel.: +36-62-599-600 (ext. 419)
| |
Collapse
|
9
|
Telitel S, Morris JC, Guillaneuf Y, Clément JL, Morlet-Savary F, Spangenberg A, Malval JP, Lalevée J, Gigmes D, Soppera O. Laser Direct Writing of Arbitrary Complex Polymer Microstructures by Nitroxide-Mediated Photopolymerization. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30779-30786. [PMID: 32515576 DOI: 10.1021/acsami.0c06339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this paper, we demonstrate the possibility of generating arbitrary polymer microstructures covalently linked to a first polymer layer by laser direct writing. At the molecular scale, the process relies on nitroxide-mediated photopolymerization triggered by a light-sensitive alkoxyamine. In addition to the proof of concept and examples of achievable structures, including multichemistry patterns and 3D structures, this paper aims at investigating the physicochemical phenomena involved under such conditions. In particular, the parameters influencing the repolymerization process are considered, and special attention is paid to the study of the impact of oxygen on the spatial control of the polymerization. Such a work opens many possibilities toward the fabrication of on-demand high-resolution (multi)functional polymer micro and nanostructures.
Collapse
Affiliation(s)
- Siham Telitel
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université de Strasbourg, F-67081 Strasbourg, France
| | - Jason C Morris
- Aix Marseille Univ, CNRS, ICR UMR 7273, F-13397 Marseille, France
| | | | | | - Fabrice Morlet-Savary
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université de Strasbourg, F-67081 Strasbourg, France
| | - Arnaud Spangenberg
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université de Strasbourg, F-67081 Strasbourg, France
| | - Jean-Pierre Malval
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université de Strasbourg, F-67081 Strasbourg, France
| | - Jacques Lalevée
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université de Strasbourg, F-67081 Strasbourg, France
| | - Didier Gigmes
- Aix Marseille Univ, CNRS, ICR UMR 7273, F-13397 Marseille, France
| | - Olivier Soppera
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université de Strasbourg, F-67081 Strasbourg, France
| |
Collapse
|
10
|
Andrew PK, Williams MAK, Avci E. Optical Micromachines for Biological Studies. MICROMACHINES 2020; 11:mi11020192. [PMID: 32069922 PMCID: PMC7074663 DOI: 10.3390/mi11020192] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/09/2020] [Accepted: 02/09/2020] [Indexed: 12/27/2022]
Abstract
Optical tweezers have been used for biological studies since shortly after their inception. However, over the years research has suggested that the intense laser light used to create optical traps may damage the specimens being studied. This review aims to provide a brief overview of optical tweezers and the possible mechanisms for damage, and more importantly examines the role of optical micromachines as tools for biological studies. This review covers the achievements to date in the field of optical micromachines: improvements in the ability to produce micromachines, including multi-body microrobots; and design considerations for both optical microrobots and the optical trapping set-up used for controlling them are all discussed. The review focuses especially on the role of micromachines in biological research, and explores some of the potential that the technology has in this area.
Collapse
Affiliation(s)
- Philippa-Kate Andrew
- Department of Mechanical and Electrical Engineering, Massey University, Palmerston North 4410, New Zealand;
| | - Martin A. K. Williams
- School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand;
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Ebubekir Avci
- Department of Mechanical and Electrical Engineering, Massey University, Palmerston North 4410, New Zealand;
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- Correspondence:
| |
Collapse
|
11
|
Vizsnyiczai G, Búzás A, Lakshmanrao Aekbote B, Fekete T, Grexa I, Ormos P, Kelemen L. Multiview microscopy of single cells through microstructure-based indirect optical manipulation. BIOMEDICAL OPTICS EXPRESS 2020; 11:945-962. [PMID: 32133231 PMCID: PMC7041459 DOI: 10.1364/boe.379233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 05/08/2023]
Abstract
Fluorescent observation of cells generally suffers from the limited axial resolution due to the elongated point spread function of the microscope optics. Consequently, three-dimensional imaging results in axial resolution that is several times worse than the transversal. The optical solutions to this problem usually require complicated optics and extreme spatial stability. A straightforward way to eliminate anisotropic resolution is to fuse images recorded from multiple viewing directions achieved mostly by the mechanical rotation of the entire sample. In the presented approach, multiview imaging of single cells is implemented by rotating them around an axis perpendicular to the optical axis by means of holographic optical tweezers. For this, the cells are indirectly trapped and manipulated with special microtools made with two-photon polymerization. The cell is firmly attached to the microtool and is precisely manipulated with 6 degrees of freedom. The total control over the cells' position allows for its multiview fluorescence imaging from arbitrarily selected directions. The image stacks obtained this way are combined into one 3D image array with a multiview image processing pipeline resulting in isotropic optical resolution that approaches the lateral diffraction limit. The presented tool and manipulation scheme can be readily applied in various microscope platforms.
Collapse
Affiliation(s)
- Gaszton Vizsnyiczai
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
- Doctoral School of Physics, Faculty of Science and Informatics, University of Szeged, Dugonics square 13, Szeged, 6720, Hungary
| | - András Búzás
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
- Doctoral School of Physics, Faculty of Science and Informatics, University of Szeged, Dugonics square 13, Szeged, 6720, Hungary
| | - Badri Lakshmanrao Aekbote
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
- School of Engineering, James Watt South Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Tamás Fekete
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, Faculty of Medicine, University of Szeged, Dugonics square 13, Szeged, 6720, Hungary
| | - István Grexa
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
- Doctoral School of Interdisciplinary Medicine, Faculty of Medicine, University of Szeged, Dugonics square 13, Szeged, 6720, Hungary
| | - Pál Ormos
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Lóránd Kelemen
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| |
Collapse
|
12
|
Yan L, Yang D, Gong Q, Li Y. Rapid Fabrication of Continuous Surface Fresnel Microlens Array by Femtosecond Laser Focal Field Engineering. MICROMACHINES 2020; 11:mi11020112. [PMID: 31972956 PMCID: PMC7074914 DOI: 10.3390/mi11020112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/05/2020] [Accepted: 01/16/2020] [Indexed: 01/13/2023]
Abstract
Femtosecond laser direct writing through two-photon polymerization has been widely used in precision fabrication of three-dimensional microstructures but is usually time consuming. In this article, we report the rapid fabrication of continuous surface Fresnel lens array through femtosecond laser three-dimensional focal field engineering. Each Fresnel lens is formed by continuous two-photon polymerization of the two-dimensional slices of the whole structure with one-dimensional scan of the corresponding two-dimensional engineered intensity distribution. Moreover, we anneal the lens array to improve its focusing and imaging performance.
Collapse
Affiliation(s)
- Linyu Yan
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Department of Physics, Peking University, Beijing 100871, China; (L.Y.); (D.Y.); (Q.G.)
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
| | - Dong Yang
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Department of Physics, Peking University, Beijing 100871, China; (L.Y.); (D.Y.); (Q.G.)
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Department of Physics, Peking University, Beijing 100871, China; (L.Y.); (D.Y.); (Q.G.)
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Yan Li
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Department of Physics, Peking University, Beijing 100871, China; (L.Y.); (D.Y.); (Q.G.)
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
- Correspondence:
| |
Collapse
|
13
|
Micromanipulation System for Isolating a Single Cryptosporidium Oocyst. MICROMACHINES 2019; 11:mi11010003. [PMID: 31861300 PMCID: PMC7019727 DOI: 10.3390/mi11010003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 11/17/2022]
Abstract
In this paper, an integrated system for contact micromanipulation of Cryptosporidium oocysts is presented. The system integrates five actuators and a partially automated control system and contacts the oocyst using a drawn glass end effector with tip dimensions of 1 μ m. The system is intended to allow single cell analysis (SCA) of Cryptosporidium-a very harmful parasite found in water supplies-by isolating the parasite oocyst of 5 μ m diameter in a new environment. By allowing this form of analysis, the source of Cryptosporidium can be found and potential harm to humans can be reduced. The system must overcome the challenges of locating the oocysts and end effector in 3D space and contact adhesion forces between them, which are prominent over inertial forces on this scale. An automated alignment method is presented, using the Prewitt operator to give feedback on the level of focus and this system is tested, demonstrating alignment accuracy of <2 μ m. Moreover, to overcome the challenge of adhesion forces, use of dry and liquid environments are investigated and a strategy is developed to capture the oocyst in the dry environment and release in the liquid environment. An experiment is conducted on the reliability of the system for isolating a Cryptosporidium oocyst from its culture, demonstrating a success rate of 98%.
Collapse
|
14
|
Gerena E, Legendre F, Molawade A, Vitry Y, Régnier S, Haliyo S. Tele-Robotic Platform for Dexterous Optical Single-Cell Manipulation. MICROMACHINES 2019; 10:mi10100677. [PMID: 31597299 PMCID: PMC6843280 DOI: 10.3390/mi10100677] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/25/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022]
Abstract
Single-cell manipulation is considered a key technology in biomedical research. However, the lack of intuitive and effective systems makes this technology less accessible. We propose a new tele–robotic solution for dexterous cell manipulation through optical tweezers. A slave-device consists of a combination of robot-assisted stages and a high-speed multi-trap technique. It allows for the manipulation of more than 15 optical traps in a large workspace with nanometric resolution. A master-device (6+1 degree of freedom (DoF)) is employed to control the 3D position of optical traps in different arrangements for specific purposes. Precision and efficiency studies are carried out with trajectory control tasks. Three state-of-the-art experiments were performed to verify the efficiency of the proposed platform. First, the reliable 3D rotation of a cell is demonstrated. Secondly, a six-DoF teleoperated optical-robot is used to transport a cluster of cells. Finally, a single-cell is dexterously manipulated through an optical-robot with a fork end-effector. Results illustrate the capability to perform complex tasks in efficient and intuitive ways, opening possibilities for new biomedical applications.
Collapse
Affiliation(s)
- Edison Gerena
- Institut des Systèmes Intelligents et de Robotique, ISIR, Sorbonne Université, CNRS, F-75005 Paris, France.
| | - Florent Legendre
- Institut des Systèmes Intelligents et de Robotique, ISIR, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Akshay Molawade
- Institut des Systèmes Intelligents et de Robotique, ISIR, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Youen Vitry
- TIPS Laboratory, CP 165/67, Université libre de Bruxelles, 50 Avenue F. Roosevelt, B-1050 Brussels, Belgium
| | - Stéphane Régnier
- Institut des Systèmes Intelligents et de Robotique, ISIR, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Sinan Haliyo
- Institut des Systèmes Intelligents et de Robotique, ISIR, Sorbonne Université, CNRS, F-75005 Paris, France
| |
Collapse
|
15
|
Automated Indirect Transportation of Biological Cells with Optical Tweezers and a 3D Printed Microtool. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9142883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Optical tweezers are widely used for noninvasive and precise micromanipulation of living cells to understand biological processes. By focusing laser beams on cells, direct cell manipulation with optical tweezers can achieve high precision and flexibility. However, direct exposure to the laser beam can lead to negative effects on the cells. These phenomena are also known as photobleaching and photodamage. In this study, we proposed a new indirect cell micromanipulation approach combined with a robot-aided holographic optical tweezer system and 3D nano-printed microtool. The microtool was designed with a V-shaped head and an optical handle part. The V-shaped head can push and trap different sizes of cells as the microtool moves forward by optical trapping of the handle part. In this way, cell exposure to the laser beam can be effectively reduced. The microtool was fabricated with a laser direct writing system by two-photon photopolymerization. A control strategy combined with an imaging processing algorithm was introduced for automated manipulation of the microtool and cells. Experiments were performed to verify the effectiveness of our approach. First, automated microtool transportation and rotation were demonstrated with high precision. Second, indirect optical transportations of cells, with and without an obstacle, were performed to demonstrate the effectiveness of the proposed approach. Third, experiments of fluorescent cell manipulation were performed to confirm that, indicated by the photobleaching effect, indirect manipulation with the microtool could induce less laser exposure compared with direct optical manipulation. The proposed method could be useful in complex biomedical applications where precise cell manipulation and less laser exposure are required.
Collapse
|
16
|
Hu S, Hu R, Dong X, Wei T, Chen S, Sun D. Translational and rotational manipulation of filamentous cells using optically driven microrobots. OPTICS EXPRESS 2019; 27:16475-16482. [PMID: 31252872 DOI: 10.1364/oe.27.016475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
Optical cell manipulation has become increasingly valuable in cell-based assays. In this paper, we demonstrate the translational and rotational manipulation of filamentous cells using multiple cooperative microrobots automatically driven by holographic optical tweezers. The photodamage of the cells due to direct irradiation of the laser beam can be effectively avoided. The proposed method will enable fruitful biomedical applications where precise cell manipulation and less photodamage are required.
Collapse
|
17
|
Yang D, Liu L, Gong Q, Li Y. Rapid Two‐Photon Polymerization of an Arbitrary 3D Microstructure with 3D Focal Field Engineering. Macromol Rapid Commun 2019; 40:e1900041. [DOI: 10.1002/marc.201900041] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/18/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Dong Yang
- State Key Laboratory for Mesoscopic PhysicsCollaborative Innovation Center of Quantum MatterDepartment of PhysicsPeking University Beijing 100871 China
| | - Lipu Liu
- State Key Laboratory for Mesoscopic PhysicsCollaborative Innovation Center of Quantum MatterDepartment of PhysicsPeking University Beijing 100871 China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic PhysicsCollaborative Innovation Center of Quantum MatterDepartment of PhysicsPeking University Beijing 100871 China
- Collaborative Innovation Center of Extreme OpticsShanxi University Taiyuan Shanxi 030006 China
| | - Yan Li
- State Key Laboratory for Mesoscopic PhysicsCollaborative Innovation Center of Quantum MatterDepartment of PhysicsPeking University Beijing 100871 China
- Collaborative Innovation Center of Extreme OpticsShanxi University Taiyuan Shanxi 030006 China
| |
Collapse
|
18
|
Kim JJK, Al Thuwaini H, Almuslem M. Photolithography of SU-8 microtowers for a 100-turn, 3-D toroidal microinductor. MICRO AND NANO SYSTEMS LETTERS 2018. [DOI: 10.1186/s40486-018-0076-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Carrascosa JL, Leake MC. Imaging the cell. Biophys Rev 2017; 9:295-296. [PMID: 28776256 DOI: 10.1007/s12551-017-0280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 07/12/2017] [Indexed: 11/24/2022] Open
Affiliation(s)
- José L Carrascosa
- Centro Nacional de Biotecnologia (CNB-CSIC) and Unidad de Nanobiotecnología and IMDEA Nanociencia-CNB-CSIC, Madrid, Spain
| | - Mark C Leake
- Biological Physical Sciences Institute (BPSI), Departments of Physics and Biology, University of York, York, UK.
| |
Collapse
|