1
|
Chen F, Dong X, Wang Z, Wu T, Wei L, Li Y, Zhang K, Ma Z, Tian C, Li J, Zhao J, Zhang W, Liu A, Shen H. Regulation of specific abnormal calcium signals in the hippocampal CA1 and primary cortex M1 alleviates the progression of temporal lobe epilepsy. Neural Regen Res 2024; 19:425-433. [PMID: 37488907 PMCID: PMC10503629 DOI: 10.4103/1673-5374.379048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/15/2023] [Accepted: 05/04/2023] [Indexed: 07/26/2023] Open
Abstract
Temporal lobe epilepsy is a multifactorial neurological dysfunction syndrome that is refractory, resistant to antiepileptic drugs, and has a high recurrence rate. The pathogenesis of temporal lobe epilepsy is complex and is not fully understood. Intracellular calcium dynamics have been implicated in temporal lobe epilepsy. However, the effect of fluctuating calcium activity in CA1 pyramidal neurons on temporal lobe epilepsy is unknown, and no longitudinal studies have investigated calcium activity in pyramidal neurons in the hippocampal CA1 and primary motor cortex M1 of freely moving mice. In this study, we used a multi-channel fiber photometry system to continuously record calcium signals in CA1 and M1 during the temporal lobe epilepsy process. We found that calcium signals varied according to the grade of temporal lobe epilepsy episodes. In particular, cortical spreading depression, which has recently been frequently used to represent the continuously and substantially increased calcium signals, was found to correspond to complex and severe behavioral characteristics of temporal lobe epilepsy ranging from grade II to grade V. However, vigorous calcium oscillations and highly synchronized calcium signals in CA1 and M1 were strongly related to convulsive motor seizures. Chemogenetic inhibition of pyramidal neurons in CA1 significantly attenuated the amplitudes of the calcium signals corresponding to grade I episodes. In addition, the latency of cortical spreading depression was prolonged, and the above-mentioned abnormal calcium signals in CA1 and M1 were also significantly reduced. Intriguingly, it was possible to rescue the altered intracellular calcium dynamics. Via simultaneous analysis of calcium signals and epileptic behaviors, we found that the progression of temporal lobe epilepsy was alleviated when specific calcium signals were reduced, and that the end-point behaviors of temporal lobe epilepsy were improved. Our results indicate that the calcium dynamic between CA1 and M1 may reflect specific epileptic behaviors corresponding to different grades. Furthermore, the selective regulation of abnormal calcium signals in CA1 pyramidal neurons appears to effectively alleviate temporal lobe epilepsy, thereby providing a potential molecular mechanism for a new temporal lobe epilepsy diagnosis and treatment strategy.
Collapse
Affiliation(s)
- Feng Chen
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
- Institute for Translational Neuroscience, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xi Dong
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
- Institute for Translational Brain Research, Fudan University, Shanghai, China
| | - Zhenhuan Wang
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Tongrui Wu
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Liangpeng Wei
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
- Department of Radiology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Yuanyuan Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kai Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zengguang Ma
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Chao Tian
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Jing Li
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingyu Zhao
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Wei Zhang
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
| | - Aili Liu
- Laboratory of Neurobiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hui Shen
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Laboratory of Neurobiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
2
|
Wu J, Jin M, Tran Q, Kim M, Kim SI, Shin J, Park H, Shin N, Kang H, Shin HJ, Lee SY, Cui SB, Lee CJ, Lee WH, Kim DW. Employing the sustained-release properties of poly(lactic-co-glycolic acid) nanoparticles to reveal a novel mechanism of sodium-hydrogen exchanger 1 in neuropathic pain. Transl Res 2024; 263:53-72. [PMID: 37678757 DOI: 10.1016/j.trsl.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/16/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
Neuropathic pain is caused by injury or disease of the somatosensory system, and its course is usually chronic. Several studies have been dedicated to investigating neuropathic pain-related targets; however, little attention has been paid to the persistent alterations that these targets, some of which may be crucial to the pathophysiology of neuropathic pain. The present study aimed to identify potential targets that may play a crucial role in neuropathic pain and validate their long-term impact. Through bioinformatics analysis of RNA sequencing results, we identified Slc9a1 and validated the reduced expression of sodium-hydrogen exchanger 1 (NHE1), the protein that Slc9a1 encodes, in the spinal nerve ligation (SNL) model. Colocalization analysis revealed that NHE1 is primarily co-localized with vesicular glutamate transporter 2-positive neurons. In vitro experiments confirmed that poly(lactic-co-glycolic acid) nanoparticles loaded with siRNA successfully inhibited NHE1 in SH-SY5Y cells, lowered intracellular pH, and increased intracellular calcium concentrations. In vivo experiments showed that sustained suppression of spinal NHE1 expression by siRNA-loaded nanoparticles resulted in delayed hyperalgesia in naïve and SNL model rats, whereas amiloride-induced transient suppression of NHE1 expression yielded no significant changes in pain sensitivity. We identified Slc9a1, which encodes NHE1, as a key gene in neuropathic pain. Utilizing the sustained release properties of nanoparticles enabled us to elucidate the chronic role of decreased NHE1 expression, establishing its significance in the mechanisms of neuropathic pain.
Collapse
Affiliation(s)
- Junhua Wu
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Neurology, Yanji Hospital, Yanji, China
| | - Meiling Jin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Quangdon Tran
- Molecular Biology Laboratory, Department of Medical Laboratories, Hai Phong International Hospital, Hai Phong City, Vietnam
| | - Minwoo Kim
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Song I Kim
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Juhee Shin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Hyewon Park
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Nara Shin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Hyunji Kang
- Center for Cognition and Sociality, Life Science Cluster, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Hyo Jung Shin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Sun Yeul Lee
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anesthesia and Pain Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Song-Biao Cui
- Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, China
| | - C Justin Lee
- Center for Cognition and Sociality, Life Science Cluster, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Won Hyung Lee
- Department of Anesthesia and Pain Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Dong Woon Kim
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
3
|
Gu M, Li X, Liang S, Zhu J, Sun P, He Y, Yu H, Li R, Zhou Z, Lyu J, Li SC, Budinger E, Zhou Y, Jia H, Zhang J, Chen X. Rabies virus-based labeling of layer 6 corticothalamic neurons for two-photon imaging in vivo. iScience 2023; 26:106625. [PMID: 37250327 PMCID: PMC10214394 DOI: 10.1016/j.isci.2023.106625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/03/2023] [Accepted: 04/03/2023] [Indexed: 05/31/2023] Open
Abstract
Neocortical layer 6 (L6) is less understood than other more superficial layers, largely owing to limitations of performing high-resolution investigations in vivo. Here, we show that labeling with the Challenge Virus Standard (CVS) rabies virus strain enables high-quality imaging of L6 neurons by conventional two-photon microscopes. CVS virus injection into the medial geniculate body can selectively label L6 neurons in the auditory cortex. Only three days after injection, dendrites and cell bodies of L6 neurons could be imaged across all cortical layers. Ca2+ imaging in awake mice showed that sound stimulation evokes neuronal responses from cell bodies with minimal contamination from neuropil signals. In addition, dendritic Ca2+ imaging revealed significant responses from spines and trunks across all layers. These results demonstrate a reliable method capable of rapid, high-quality labeling of L6 neurons that can be readily extended to other brain regions.
Collapse
Affiliation(s)
- Miaoqing Gu
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning 530004, China
| | - Xiuli Li
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Shanshan Liang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Jiahui Zhu
- Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning 530004, China
| | - Pei Sun
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Yong He
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Haipeng Yu
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, School of Basic Medicine, Third Military Medical University, Chongqing 400038, China
| | - Ruijie Li
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Zhenqiao Zhou
- Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Jing Lyu
- Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Sunny C. Li
- Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning 530004, China
| | - Eike Budinger
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Yi Zhou
- Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning 530004, China
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, School of Basic Medicine, Third Military Medical University, Chongqing 400038, China
| | - Hongbo Jia
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Jianxiong Zhang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
- Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing 400064, China
| |
Collapse
|
4
|
Brain-wide projection reconstruction of single functionally defined neurons. Nat Commun 2022; 13:1531. [PMID: 35318336 PMCID: PMC8940919 DOI: 10.1038/s41467-022-29229-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/04/2022] [Indexed: 12/23/2022] Open
Abstract
Reconstructing axonal projections of single neurons at the whole-brain level is currently a converging goal of the neuroscience community that is fundamental for understanding the logic of information flow in the brain. Thousands of single neurons from different brain regions have recently been morphologically reconstructed, but the corresponding physiological functional features of these reconstructed neurons are unclear. By combining two-photon Ca2+ imaging with targeted single-cell plasmid electroporation, we reconstruct the brain-wide morphologies of single neurons that are defined by a sound-evoked response map in the auditory cortices (AUDs) of awake mice. Long-range interhemispheric projections can be reliably labelled via co-injection with an adeno-associated virus, which enables enhanced expression of indicator protein in the targeted neurons. Here we show that this method avoids the randomness and ambiguity of conventional methods of neuronal morphological reconstruction, offering an avenue for developing a precise one-to-one map of neuronal projection patterns and physiological functional features. Brain-wide axonal projections of single neurons have been extensively reconstructed without any functional characterization. The authors present a method that allows for developing a precise one-to-one map of both projection patterns and functional features of single neurons in mice.
Collapse
|
5
|
Non-invasive, opsin-free mid-infrared modulation activates cortical neurons and accelerates associative learning. Nat Commun 2021; 12:2730. [PMID: 33980868 PMCID: PMC8115038 DOI: 10.1038/s41467-021-23025-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/31/2021] [Indexed: 12/23/2022] Open
Abstract
Neurostimulant drugs or magnetic/electrical stimulation techniques can overcome attention deficits, but these drugs or techniques are weakly beneficial in boosting the learning capabilities of healthy subjects. Here, we report a stimulation technique, mid-infrared modulation (MIM), that delivers mid-infrared light energy through the opened skull or even non-invasively through a thinned intact skull and can activate brain neurons in vivo without introducing any exogeneous gene. Using c-Fos immunohistochemistry, in vivo single-cell electrophysiology and two-photon Ca2+ imaging in mice, we demonstrate that MIM significantly induces firing activities of neurons in the targeted cortical area. Moreover, mice that receive MIM targeting to the auditory cortex during an auditory associative learning task exhibit a faster learning speed (~50% faster) than control mice. Together, this non-invasive, opsin-free MIM technique is demonstrated with potential for modulating neuronal activity.
Collapse
|
6
|
Luo L, Xu Y, Pan J, Wang M, Guan J, Liang S, Li Y, Jia H, Chen X, Li X, Zhang C, Liao X. Restoration of Two-Photon Ca 2+ Imaging Data Through Model Blind Spatiotemporal Filtering. Front Neurosci 2021; 15:630250. [PMID: 33935628 PMCID: PMC8085276 DOI: 10.3389/fnins.2021.630250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/12/2021] [Indexed: 11/17/2022] Open
Abstract
Two-photon Ca2+ imaging is a leading technique for recording neuronal activities in vivo with cellular or subcellular resolution. However, during experiments, the images often suffer from corruption due to complex noises. Therefore, the analysis of Ca2+ imaging data requires preprocessing steps, such as denoising, to extract biologically relevant information. We present an approach that facilitates imaging data restoration through image denoising performed by a neural network combining spatiotemporal filtering and model blind learning. Tests with synthetic and real two-photon Ca2+ imaging datasets demonstrate that the proposed approach enables efficient restoration of imaging data. In addition, we demonstrate that the proposed approach outperforms the current state-of-the-art methods by evaluating the qualities of the denoising performance of the models quantitatively. Therefore, our method provides an invaluable tool for denoising two-photon Ca2+ imaging data by model blind spatiotemporal processing.
Collapse
Affiliation(s)
- Liyong Luo
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Yuanxu Xu
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Junxia Pan
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Meng Wang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Jiangheng Guan
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Shanshan Liang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Yurong Li
- Department of Patient Management, Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hongbo Jia
- Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Xingyi Li
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Chunqing Zhang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiang Liao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
7
|
Involvement of NMDA and GABA(A) receptors in modulation of spontaneous activity in hippocampal culture: Interrelations between burst firing and intracellular calcium signal. Biochem Biophys Res Commun 2021; 553:99-106. [PMID: 33765560 DOI: 10.1016/j.bbrc.2021.02.149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/28/2022]
Abstract
Spontaneous burst firing is a hallmark attributed to the neuronal network activity. It is known to be accompanied by intracellular calcium [Са2+]i oscillations within the bursting neurons. Studying mechanisms underlying regulation of burst firing is highly relevant, since impairment in neuronal bursting accompanies different neurological disorders. In the present study, the contribution of NMDA and GABA(A) receptors to the shape formation of spontaneous burst -was studied in cultured hippocampal neurons. A combination of inhibitory analysis with simultaneous registration of neuronal bursting by whole-cell patch clamp and calcium imaging was used to assess spontaneous burst firing and [Са2+]i level. Using bicuculline and D-AP5 we showed that GABA(A) and NMDA receptors effectively modulate burst plateau phase and [Са2+]i transient spike which can further affect action potential (AP) amplitudes and firing frequency within a burst. Bicuculline significantly elevated the amplitude and reduced the duration of both burst plateau phase and [Са2+]i spike resulting in an increase of AP firing frequency and shortening of AP amplitudes within a burst. D-AP5 significantly decreases the amplitude of both plateau phase and [Са2+]i spike along with a burst duration that correlated with an increase in AP amplitudes and reduced firing frequency within a burst. The effect of bicuculline was occluded by co-addition of D-AP5 revealing modulatory role of GABA(A) receptors to the NMDA receptor-mediated formation of the burst. Our results provide new evidence on importance of NMDA and GABA(A) receptors in shaping burst firing and Ca2+transient spikes in cultured hippocampal neurons.
Collapse
|
8
|
Shen Y, Quan T, Wang M, Liu X, Lv X, Chen X, Zeng S. Neural spike train reconstruction from calcium imaging via a signal-shape composition model. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1829-1832. [PMID: 33219904 DOI: 10.1007/s11427-019-1769-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/24/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Yu Shen
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Huazhong University of Science and Technology, Wuhan, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tingwei Quan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Huazhong University of Science and Technology, Wuhan, 430074, China. .,MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China. .,College of Mathematics and Economics, Hubei University of Education, Wuhan, 430205, China.
| | - Meng Wang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Xiuli Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Huazhong University of Science and Technology, Wuhan, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaohua Lv
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Huazhong University of Science and Technology, Wuhan, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Shaoqun Zeng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Huazhong University of Science and Technology, Wuhan, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
9
|
Wang M, Liao X, Li R, Liang S, Ding R, Li J, Zhang J, He W, Liu K, Pan J, Zhao Z, Li T, Zhang K, Li X, Lyu J, Zhou Z, Varga Z, Mi Y, Zhou Y, Yan J, Zeng S, Liu JK, Konnerth A, Nelken I, Jia H, Chen X. Single-neuron representation of learned complex sounds in the auditory cortex. Nat Commun 2020; 11:4361. [PMID: 32868773 PMCID: PMC7459331 DOI: 10.1038/s41467-020-18142-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/05/2020] [Indexed: 12/29/2022] Open
Abstract
The sensory responses of cortical neuronal populations following training have been extensively studied. However, the spike firing properties of individual cortical neurons following training remain unknown. Here, we have combined two-photon Ca2+ imaging and single-cell electrophysiology in awake behaving mice following auditory associative training. We find a sparse set (~5%) of layer 2/3 neurons in the primary auditory cortex, each of which reliably exhibits high-rate prolonged burst firing responses to the trained sound. Such bursts are largely absent in the auditory cortex of untrained mice. Strikingly, in mice trained with different multitone chords, we discover distinct subsets of neurons that exhibit bursting responses specifically to a chord but neither to any constituent tone nor to the other chord. Thus, our results demonstrate an integrated representation of learned complex sounds in a small subset of cortical neurons. Using a combination of two-photon imaging and single-cell electrophysiology, the authors discover that associative learning induces the emergence of a unique subset of neurons in the auditory cortex, exhibiting high-rate bursting responses to the learned complex sounds but not to any of the constituents.
Collapse
Affiliation(s)
- Meng Wang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China.,Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Department of Biomedical Engineering, Key Laboratory for Biomedical Photonics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiang Liao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, 400030, China.
| | - Ruijie Li
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Shanshan Liang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Ran Ding
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Jingcheng Li
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Jianxiong Zhang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Wenjing He
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Ke Liu
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Junxia Pan
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Zhikai Zhao
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Tong Li
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Kuan Zhang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Xingyi Li
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China.,Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Jing Lyu
- Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Zhenqiao Zhou
- Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Zsuzsanna Varga
- Institute of Neuroscience and the SyNergy Cluster, Technical University Munich, 80802, Munich, Germany
| | - Yuanyuan Mi
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Yi Zhou
- Advanced Institute for Brain and Intelligence, Guangxi University, Nanning, 530004, China
| | - Junan Yan
- Advanced Institute for Brain and Intelligence, Guangxi University, Nanning, 530004, China
| | - Shaoqun Zeng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Department of Biomedical Engineering, Key Laboratory for Biomedical Photonics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jian K Liu
- Centre for Systems Neuroscience, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, LE1 7RH, UK
| | - Arthur Konnerth
- Institute of Neuroscience and the SyNergy Cluster, Technical University Munich, 80802, Munich, Germany
| | - Israel Nelken
- The Edmond and Lily Safra Center for Brain Sciences, and the Department of Neurobiology, Silberman Institute of Life Sciences, Hebrew University, Jerusalem, 91904, Israel
| | - Hongbo Jia
- Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China. .,Institute of Neuroscience and the SyNergy Cluster, Technical University Munich, 80802, Munich, Germany. .,Advanced Institute for Brain and Intelligence, Guangxi University, Nanning, 530004, China.
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
10
|
Bowen Z, Winkowski DE, Kanold PO. Functional organization of mouse primary auditory cortex in adult C57BL/6 and F1 (CBAxC57) mice. Sci Rep 2020; 10:10905. [PMID: 32616766 PMCID: PMC7331716 DOI: 10.1038/s41598-020-67819-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/15/2020] [Indexed: 12/05/2022] Open
Abstract
The primary auditory cortex (A1) plays a key role for sound perception since it represents one of the first cortical processing stations for sounds. Recent studies have shown that on the cellular level the frequency organization of A1 is more heterogeneous than previously appreciated. However, many of these studies were performed in mice on the C57BL/6 background which develop high frequency hearing loss with age making them a less optimal choice for auditory research. In contrast, mice on the CBA background retain better hearing sensitivity in old age. Since potential strain differences could exist in A1 organization between strains, we performed comparative analysis of neuronal populations in A1 of adult (~ 10 weeks) C57BL/6 mice and F1 (CBAxC57) mice. We used in vivo 2-photon imaging of pyramidal neurons in cortical layers L4 and L2/3 of awake mouse primary auditory cortex (A1) to characterize the populations of neurons that were active to tonal stimuli. Pure tones recruited neurons of widely ranging frequency preference in both layers and strains with neurons in F1 (CBAxC57) mice exhibiting a wider range of frequency preference particularly to higher frequencies. Frequency selectivity was slightly higher in C57BL/6 mice while neurons in F1 (CBAxC57) mice showed a greater sound-level sensitivity. The spatial heterogeneity of frequency preference was present in both strains with F1 (CBAxC57) mice exhibiting higher tuning diversity across all measured length scales. Our results demonstrate that the tone evoked responses and frequency representation in A1 of adult C57BL/6 and F1 (CBAxC57) mice are largely similar.
Collapse
Affiliation(s)
- Zac Bowen
- Department of Biology, University of Maryland, 1116 Biosciences Res. Bldg., College Park, MD, 20742, USA
| | - Daniel E Winkowski
- Department of Biology, University of Maryland, 1116 Biosciences Res. Bldg., College Park, MD, 20742, USA
| | - Patrick O Kanold
- Department of Biology, University of Maryland, 1116 Biosciences Res. Bldg., College Park, MD, 20742, USA.
| |
Collapse
|
11
|
Dong X, Zhang X, Wang F, Liu N, Liu A, Li Y, Wei L, Chen F, Yuan S, Zhang K, Hou S, Jiao Q, Hu Q, Guo C, Wu T, Wei S, Shen H. Simultaneous calcium recordings of hippocampal CA1 and primary motor cortex M1 and their relations to behavioral activities in freely moving epileptic mice. Exp Brain Res 2020; 238:1479-1488. [PMID: 32424694 DOI: 10.1007/s00221-020-05815-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/15/2020] [Indexed: 11/25/2022]
Abstract
Epilepsy is a common neurological disorder characterized by recurrent epileptic seizures. The cause of most cases of epilepsy is unknown. Although changes of calcium events in a single brain region during seizures have been reported before, there have been few studies on relations between calcium events of two different brain regions and epileptic behaviors in freely moving mice. To analyze calcium events simultaneously recorded in hippocampal CA1 (CA1) and primary motor cortex M1 (M1), and to explore their relations to various epileptic behaviors in freely moving epileptic models. Epileptic models were induced by Kainic acid (KA), a direct agonist of glutamatergic receptor, on adult male C57/BL6J mice. Calcium events of neurons and glia in CA1 and M1 labeled by a calcium indicator dye were recorded simultaneously with a multi-channel fiber photometry system. Three typical types of calcium events associated with KA-induced seizures were observed, including calcium baseline-rising, cortical spreading depression (CSD) and calcium flashing with a steady rate. Our results showed that the calcium baseline-rising occurred in CA1 was synchronized with that in M1, but the CSD waves were not. However, synchronization of calcium flashing in the two areas was uncertain, because it was only detected in CA1. We also observed that different calcium events happened with different epileptic behaviors. Baseline-rising events were accompanied by clonus of forelimbs or trembling, CSD waves were closely related to head movements (15 out of 18, 6 mice). Calcium flashing occurred definitely with drastic convulsive motor seizures (CMS, 6 mice). The results prove that the synchronization of calcium event exists in CA1 and M1, and different calcium events are related with different seizure behaviors. Our results suggest that calcium events involve in the synchronization of neural network and behaviors in epilepsy.
Collapse
Affiliation(s)
- Xi Dong
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Xin Zhang
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Feifei Wang
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Nannan Liu
- Tianjin Mental Health Institute, Tianjin Anding Hospital, Tianjin, China
| | - Aili Liu
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Yuanyuan Li
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Liangpeng Wei
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Feng Chen
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Shiyang Yuan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Kai Zhang
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China
| | - Shaowei Hou
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Qingyan Jiao
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Qi Hu
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Cunle Guo
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Tongrui Wu
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Sheng Wei
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hui Shen
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China. .,Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
12
|
Liu J, Wang M, Sun L, Pan NC, Zhang C, Zhang J, Zuo Z, He S, Wu Q, Wang X. Integrative analysis of in vivo recording with single-cell RNA-seq data reveals molecular properties of light-sensitive neurons in mouse V1. Protein Cell 2020; 11:417-432. [PMID: 32350740 PMCID: PMC7251024 DOI: 10.1007/s13238-020-00720-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/09/2020] [Indexed: 01/09/2023] Open
Abstract
Vision formation is classically based on projections from retinal ganglion cells (RGC) to the lateral geniculate nucleus (LGN) and the primary visual cortex (V1). Neurons in the mouse V1 are tuned to light stimuli. Although the cellular information of the retina and the LGN has been widely studied, the transcriptome profiles of single light-stimulated neuron in V1 remain unknown. In our study, in vivo calcium imaging and whole-cell electrophysiological patch-clamp recording were utilized to identify 53 individual cells from layer 2/3 of V1 as light-sensitive (LS) or non-light-sensitive (NS) by single-cell light-evoked calcium evaluation and action potential spiking. The contents of each cell after functional tests were aspirated in vivo through a patch-clamp pipette for mRNA sequencing. Moreover, the three-dimensional (3-D) morphological characterizations of the neurons were reconstructed in a live mouse after the whole-cell recordings. Our sequencing results indicated that V1 neurons with a high expression of genes related to transmission regulation, such as Rtn4r and Rgs7, and genes involved in membrane transport, such as Na+/K+ ATPase and NMDA-type glutamatergic receptors, preferentially responded to light stimulation. Furthermore, an antagonist that blocks Rtn4r signals could inactivate the neuronal responses to light stimulation in live mice. In conclusion, our findings of the vivo-seq analysis indicate the key role of the strength of synaptic transmission possesses neurons in V1 of light sensory.
Collapse
Affiliation(s)
- Jianwei Liu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengdi Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Le Sun
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Clara Pan
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Changjiang Zhang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junjing Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Sheng He
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
13
|
Ohga S, Tsukano H, Horie M, Terashima H, Nishio N, Kubota Y, Takahashi K, Hishida R, Takebayashi H, Shibuki K. Direct Relay Pathways from Lemniscal Auditory Thalamus to Secondary Auditory Field in Mice. Cereb Cortex 2019; 28:4424-4439. [PMID: 30272122 PMCID: PMC6215474 DOI: 10.1093/cercor/bhy234] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 09/01/2018] [Indexed: 12/19/2022] Open
Abstract
Tonotopy is an essential functional organization in the mammalian auditory cortex, and its source in the primary auditory cortex (A1) is the incoming frequency-related topographical projections from the ventral division of the medial geniculate body (MGv). However, circuits that relay this functional organization to higher-order regions such as the secondary auditory field (A2) have yet to be identified. Here, we discovered a new pathway that projects directly from MGv to A2 in mice. Tonotopy was established in A2 even when primary fields including A1 were removed, which indicates that tonotopy in A2 can be established solely by thalamic input. Moreover, the structural nature of differing thalamocortical connections was consistent with the functional organization of the target regions in the auditory cortex. Retrograde tracing revealed that the region of MGv input to a local area in A2 was broader than the region of MGv input to A1. Consistent with this anatomy, two-photon calcium imaging revealed that neuronal responses in the thalamocortical recipient layer of A2 showed wider bandwidth and greater heterogeneity of the best frequency distribution than those of A1. The current study demonstrates a new thalamocortical pathway that relays frequency information to A2 on the basis of the MGv compartmentalization.
Collapse
Affiliation(s)
- Shinpei Ohga
- Department of Neurophysiology, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Hiroaki Tsukano
- Department of Neurophysiology, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Masao Horie
- Department of Morphological Sciences, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Japan
| | - Hiroki Terashima
- NTT Communication Science Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi-shi, Kanagawa, Japan
| | - Nana Nishio
- Department of Neurophysiology, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Yamato Kubota
- Department of Otolaryngology, Graduate School of Medicine and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Kuniyuki Takahashi
- Department of Otolaryngology, Graduate School of Medicine and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Ryuichi Hishida
- Department of Neurophysiology, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medicine and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Katsuei Shibuki
- Department of Neurophysiology, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| |
Collapse
|
14
|
Rancic V, Haque F, Ballanyi K, Gosgnach S. Using an upright preparation to identify and characterize locomotor related neurons across the transverse plane of the neonatal mouse spinal cord. J Neurosci Methods 2019; 323:90-97. [PMID: 31132372 DOI: 10.1016/j.jneumeth.2019.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND The basic rhythmicity underlying stepping in mammals is generated by a neural network, situated in the spinal cord, known as the locomotor central pattern generator (CPG). While a molecular approach has provided information regarding neuronal populations that participate in locomotor activity and their specific function, the distributed nature of the locomotor CPG has made it difficult to identify and characterize the specific neurons belonging to each population that are rhythmically-active during stepping. NEW METHOD We describe a preparation in which we isolate the spinal cord from a neonatal mouse, section it at a lumbar segment, situate it in an upright orientation under the objective lens of a 2- photon microscope, and evoke fictive locomotion. RESULTS This preparation allows us to image rhythmic Ca2+ oscillations in spinal neurons, and visually identify those that are involved in fictive locomotor activity. We can then characterize unique features of these neurons. COMPARISON WITH EXISTING METHODS This builds on existing fictive locomotor preparations and is the first which allows for the visual identification of locomotor related neurons spanning the transverse plane of the spinal cord, facilitating their electrophysiological and anatomical characterization CONCLUSIONS: This approach promises to provide new information regarding the distribution of the locomotor CPG in the transverse plane, the characteristics of its component interneurons, as well as the cellular mechanisms and network properties which underlie rhythm generation. By altering the location of Ca2+ indicator application it can also be used to identify and characterize neurons involved in other facets of sensorimotor processing.
Collapse
Affiliation(s)
- Vladimir Rancic
- Department of Physiology, University of Alberta, 3-020D Katz Building, Edmonton, Alberta, T6G 2E1, Canada
| | - Farhia Haque
- Neuroscience and Mental Health Institute, University of Alberta, 3-020D Katz Building, Edmonton, Alberta, T6G 2E1, Canada
| | - Klaus Ballanyi
- Department of Physiology, University of Alberta, 3-020D Katz Building, Edmonton, Alberta, T6G 2E1, Canada; Neuroscience and Mental Health Institute, University of Alberta, 3-020D Katz Building, Edmonton, Alberta, T6G 2E1, Canada
| | - Simon Gosgnach
- Department of Physiology, University of Alberta, 3-020D Katz Building, Edmonton, Alberta, T6G 2E1, Canada; Neuroscience and Mental Health Institute, University of Alberta, 3-020D Katz Building, Edmonton, Alberta, T6G 2E1, Canada.
| |
Collapse
|
15
|
Tischbirek CH, Noda T, Tohmi M, Birkner A, Nelken I, Konnerth A. In Vivo Functional Mapping of a Cortical Column at Single-Neuron Resolution. Cell Rep 2019; 27:1319-1326.e5. [DOI: 10.1016/j.celrep.2019.04.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/26/2019] [Accepted: 03/29/2019] [Indexed: 12/31/2022] Open
|
16
|
Local homogeneity of tonotopic organization in the primary auditory cortex of marmosets. Proc Natl Acad Sci U S A 2019; 116:3239-3244. [PMID: 30718428 DOI: 10.1073/pnas.1816653116] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Marmoset has emerged as a useful nonhuman primate species for studying brain structure and function. Previous studies on the mouse primary auditory cortex (A1) showed that neurons with preferential frequency-tuning responses are mixed within local cortical regions, despite a large-scale tonotopic organization. Here we found that frequency-tuning properties of marmoset A1 neurons are highly uniform within local cortical regions. We first defined the tonotopic map of A1 using intrinsic optical imaging and then used in vivo two-photon calcium imaging of large neuronal populations to examine the tonotopic preference at the single-cell level. We found that tuning preferences of layer 2/3 neurons were highly homogeneous over hundreds of micrometers in both horizontal and vertical directions. Thus, marmoset A1 neurons are distributed in a tonotopic manner at both macro- and microscopic levels. Such organization is likely to be important for the organization of auditory circuits in the primate brain.
Collapse
|
17
|
Li R, Wang M, Yao J, Liang S, Liao X, Yang M, Zhang J, Yan J, Jia H, Chen X, Li X. Two-Photon Functional Imaging of the Auditory Cortex in Behaving Mice: From Neural Networks to Single Spines. Front Neural Circuits 2018; 12:33. [PMID: 29740289 PMCID: PMC5928246 DOI: 10.3389/fncir.2018.00033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/10/2018] [Indexed: 11/17/2022] Open
Abstract
In vivo two-photon Ca2+ imaging is a powerful tool for recording neuronal activities during perceptual tasks and has been increasingly applied to behaving animals for acute or chronic experiments. However, the auditory cortex is not easily accessible to imaging because of the abundant temporal muscles, arteries around the ears and their lateral locations. Here, we report a protocol for two-photon Ca2+ imaging in the auditory cortex of head-fixed behaving mice. By using a custom-made head fixation apparatus and a head-rotated fixation procedure, we achieved two-photon imaging and in combination with targeted cell-attached recordings of auditory cortical neurons in behaving mice. Using synthetic Ca2+ indicators, we recorded the Ca2+ transients at multiple scales, including neuronal populations, single neurons, dendrites and single spines, in auditory cortex during behavior. Furthermore, using genetically encoded Ca2+ indicators (GECIs), we monitored the neuronal dynamics over days throughout the process of associative learning. Therefore, we achieved two-photon functional imaging at multiple scales in auditory cortex of behaving mice, which extends the tool box for investigating the neural basis of audition-related behaviors.
Collapse
Affiliation(s)
- Ruijie Li
- Brain Research Center, Third Military Medical University, Chongqing, China
| | - Meng Wang
- Brain Research Center, Third Military Medical University, Chongqing, China
| | - Jiwei Yao
- Department of Urology, Institute of Urinary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shanshan Liang
- Brain Research Center, Third Military Medical University, Chongqing, China
| | - Xiang Liao
- Brain Research Center, Third Military Medical University, Chongqing, China
| | - Mengke Yang
- Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Jianxiong Zhang
- Brain Research Center, Third Military Medical University, Chongqing, China
| | - Junan Yan
- Department of Urology, Institute of Urinary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hongbo Jia
- Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Xiaowei Chen
- Brain Research Center, Third Military Medical University, Chongqing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xingyi Li
- Brain Research Center, Third Military Medical University, Chongqing, China
| |
Collapse
|
18
|
Frequency selectivity of echo responses in the mouse primary auditory cortex. Sci Rep 2018; 8:49. [PMID: 29311673 PMCID: PMC5758803 DOI: 10.1038/s41598-017-18465-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023] Open
Abstract
In the primary auditory cortex (A1), neuronal ensembles are activated relative to anticipated sound events following rhythmic stimulation, but whether the echo responses of the neurons are related to their frequency selectivity remains unknown. Therefore, we used in vivo two-photon Ca2+ imaging to record the neuronal activities in the mouse A1 to elucidate the relationship between their echo responses and frequency selectivity. We confirmed the presence of echo responses in a subgroup of mouse Layer 2/3 A1 neurons following a train of rhythmic pure tone stimulation. After testing with a range of frequencies, we found that these echo responses occurred preferentially close to the best frequencies of the neurons. The local organization of the echo responses of the neurons was heterogeneous in the A1. Therefore, these results indicate that the observed echo responses of neurons within A1 are highly related to their frequency selectivity.
Collapse
|