1
|
Bratasz Z, Martinache O, Sverdlin J, Gatinel D, Atlan M. Aberration compensation in Doppler holography of the human eye fundus by subaperture signal correlation. BIOMEDICAL OPTICS EXPRESS 2024; 15:5660-5673. [PMID: 39421762 PMCID: PMC11482168 DOI: 10.1364/boe.528568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 10/19/2024]
Abstract
The process of obtaining images of capillary vessels in the human eye's fundus using Doppler holography encounters difficulties due to ocular aberrations. To enhance the accuracy of these images, it is advantageous to apply an adaptive aberration correction technique. This study focuses on numerical Shack-Hartmann, which employs sub-pupil correlation as the wavefront sensing method. Application of this technique to Doppler holography encounters unique challenges due to the holographic detection properties. A detailed comparative analysis of the regularization technique against direct gradient integration in the estimation of aberrations is made. Two different reference images for the measurement of image shifts across subapertures are considered. The comparison reveals that direct gradient integration exhibits greater effectiveness in correcting asymmetrical aberrations.
Collapse
Affiliation(s)
- Zofia Bratasz
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005 Paris, France
- Quinze-Vingts National Eye Hospital, 28 rue de Charenton, Paris 75012, France
| | - Olivier Martinache
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005 Paris, France
- Quinze-Vingts National Eye Hospital, 28 rue de Charenton, Paris 75012, France
| | - Julia Sverdlin
- Quinze-Vingts National Eye Hospital, 28 rue de Charenton, Paris 75012, France
- Essilor Instruments, France
| | - Damien Gatinel
- Rothschild Ophthalmologic Foundation, Clinical Studies Department, Paris 75019, France
| | - Michael Atlan
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005 Paris, France
- Quinze-Vingts National Eye Hospital, 28 rue de Charenton, Paris 75012, France
| |
Collapse
|
2
|
Neuhaus K, Khan S, Thaware O, Ni S, Aga M, Jia Y, Redd T, Chen S, Huang D, Jian Y. Real-time line-field optical coherence tomography for cellular resolution imaging of biological tissue. BIOMEDICAL OPTICS EXPRESS 2024; 15:1059-1073. [PMID: 38404311 PMCID: PMC10890841 DOI: 10.1364/boe.511187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/27/2024]
Abstract
A real-time line-field optical coherence tomography (LF-OCT) system is demonstrated with image acquisition rates of up to 5000 B-frames or 2.5 million A-lines per second for 500 A-lines per B-frame. The system uses a high-speed low-cost camera to achieve continuous data transfer rates required for real-time imaging, allowing the evaluation of future applications in clinical or intraoperative environments. The light source is an 840 nm super-luminescent diode. Leveraging parallel computing with GPU and high speed CoaXPress data transfer interface, we were able to acquire, process, and display OCT data with low latency. The studied system uses anamorphic beam shaping in the detector arm, optimizing the field of view and sensitivity for imaging biological tissue at cellular resolution. The lateral and axial resolution measured in air were 1.7 µm and 6.3 µm, respectively. Experimental results demonstrate real-time inspection of the trabecular meshwork and Schlemm's canal on ex vivo corneoscleral wedges and real-time imaging of endothelial cells of human subjects in vivo.
Collapse
Affiliation(s)
- Kai Neuhaus
- Casey Eye Institute, Oregon Health & Science University , Portland, OR 97239, USA
| | - Shanjida Khan
- Casey Eye Institute, Oregon Health & Science University , Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Omkar Thaware
- Casey Eye Institute, Oregon Health & Science University , Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Shuibin Ni
- Casey Eye Institute, Oregon Health & Science University , Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Mini Aga
- Casey Eye Institute, Oregon Health & Science University , Portland, OR 97239, USA
| | - Yali Jia
- Casey Eye Institute, Oregon Health & Science University , Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Travis Redd
- Casey Eye Institute, Oregon Health & Science University , Portland, OR 97239, USA
| | - Siyu Chen
- Casey Eye Institute, Oregon Health & Science University , Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - David Huang
- Casey Eye Institute, Oregon Health & Science University , Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Yifan Jian
- Casey Eye Institute, Oregon Health & Science University , Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
3
|
Wolfgang M, Kern A, Deng S, Stranzinger S, Liu M, Drexler W, Leitgeb R, Haindl R. Ultra-high-resolution optical coherence tomography for the investigation of thin multilayered pharmaceutical coatings. Int J Pharm 2023; 643:123096. [PMID: 37268027 DOI: 10.1016/j.ijpharm.2023.123096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023]
Abstract
Optical Coherence Tomography (OCT) has recently gained attention as a promising technology for in-line monitoring of pharmaceutical film-coating processes for (single-layered) tablet coatings and end-point detection with commercial systems. An increasing interest in the investigation of multiparticulate dosage forms with mostly multi-layered coatings below 20 µm final film thickness demands advancement in OCT technology for pharmaceutical imaging. We present an ultra-high-resolution (UHR-) OCT and investigate its performance based on three different multiparticulate dosage forms with different layer structures (one single-layered, two multi-layered) with layer thicknesses in a range from 5 to 50 µm. The achieved system resolution of 2.4 µm (axial) and 3.4 µm (lateral, both in air) enables the assessment of defects, film thickness variability and morphological features within the coating, previously unattainable using OCT. Despite the high transverse resolution, the provided depth of field was found sufficient to reach the core region of all dosage forms under test. We further demonstrate an automated segmentation and evaluation of UHR-OCT images for coating thicknesses, where human experts struggle using today's standard OCT systems.
Collapse
Affiliation(s)
| | - Alice Kern
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Shiyu Deng
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | | | - Mengyang Liu
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Rainer Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory OPTRAMED, Medical University of Vienna, Vienna, Austria.
| | - Richard Haindl
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| |
Collapse
|
4
|
Zhang J, Mazlin V, Fei K, Boccara AC, Yuan J, Xiao P. Time-domain full-field optical coherence tomography (TD-FF-OCT) in ophthalmic imaging. Ther Adv Chronic Dis 2023; 14:20406223231170146. [PMID: 37152350 PMCID: PMC10161339 DOI: 10.1177/20406223231170146] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 03/29/2023] [Indexed: 05/09/2023] Open
Abstract
Ocular imaging plays an irreplaceable role in the evaluation of eye diseases. Developing cellular-resolution ophthalmic imaging technique for more accurate and effective diagnosis and pathogenesis analysis of ocular diseases is a hot topic in the cross-cutting areas of ophthalmology and imaging. Currently, ocular imaging with traditional optical coherence tomography (OCT) is limited in lateral resolution and thus can hardly resolve cellular structures. Conventional OCT technology obtains ultra-high resolution at the expense of a certain imaging range and cannot achieve full field of view imaging. In the early years, Time-domain full-field OCT (TD-FF-OCT) has been mainly used for ex vivo ophthalmic tissue studies, limited by the low speed and low full-well capacity of existing two-dimensional (2D) cameras. The recent improvements in system design opened new imaging possibilities for in vivo applications thanks to its distinctive optical properties of TD-FF-OCT such as a spatial resolution almost insensitive to aberrations, and the possibility to control the curvature of the optical slice. This review also attempts to look at the future directions of TD-FF-OCT evolution, for example, the potential transfer of the functional-imaging dynamic TD-FF-OCT from the ex vivo into in vivo use and its expected benefit in basic and clinical ophthalmic research. Through non-invasive, wide-field, and cellular-resolution imaging, TD-FF-OCT has great potential to be the next-generation imaging modality to improve our understanding of human eye physiology and pathology.
Collapse
Affiliation(s)
- Jinze Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Viacheslav Mazlin
- ESPCI Paris, PSL University, CNRS, Langevin Institute, Paris, France
| | - Keyi Fei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | | | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Jinsui Road 7, Guangzhou 510060, Guangdong, China
| | - Peng Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Jinsui Road 7, Guangzhou 510060, Guangdong, China
| |
Collapse
|
5
|
Chen K, Song W, Han L, Bizheva K. Powell lens-based line-field spectral domain optical coherence tomography system for cellular resolution imaging of biological tissue. BIOMEDICAL OPTICS EXPRESS 2023; 14:2003-2014. [PMID: 37206146 PMCID: PMC10191637 DOI: 10.1364/boe.486980] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 05/21/2023]
Abstract
A Powell lens is used in a line-field spectral domain OCT (PL-LF-SD-OCT) system to generate a line-shaped imaging beam with almost uniform distribution of the optical power in the line direction. This design overcomes the severe sensitivity loss (∼10 dB) observed along the line length direction (B-scan) in LF-OCT systems based on cylindrical lens line generators. The PL-LF-SD-OCT system offers almost isotropic spatial resolution (Δx and Δy ∼2 µm, Δz ∼1.8 µm) in free space and sensitivity of ∼87 dB for 2.5 mW imaging power at 2,000 fps imaging rate with only ∼1.6 dB sensitivity loss along the line length. Images acquired with the PL-LF-SD-OCT system allow for visualization of the cellular and sub-cellular structure of biological tissues.
Collapse
Affiliation(s)
- Keyu Chen
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Weixiang Song
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Le Han
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Kostadinka Bizheva
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- School of Optometry and Vision Sciences, University of Waterloo, Waterloo, Ontario, Canada
- Systems Design Engineering Department, University of Waterloo, Waterloo, OntarioN2L 3G1, Canada
| |
Collapse
|
6
|
Lee B, Jeong S, Lee J, Kim TS, Braaf B, Vakoc BJ, Oh WY. Wide-Field Three-Dimensional Depth-Invariant Cellular-Resolution Imaging of the Human Retina. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2203357. [PMID: 36642824 PMCID: PMC10023497 DOI: 10.1002/smll.202203357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Three-dimensional (3D) cellular-resolution imaging of the living human retina over a large field of view will bring a great impact in clinical ophthalmology, potentially finding new biomarkers for early diagnosis and improving the pathophysiological understanding of ocular diseases. While hardware-based and computational adaptive optics (AO) optical coherence tomography (OCT) have been developed to achieve cellular-resolution retinal imaging, these approaches support limited 3D imaging fields, and their high cost and intrinsic hardware complexity limit their practical utility. Here, this work demonstrates 3D depth-invariant cellular-resolution imaging of the living human retina over a 3 × 3 mm field of view using the first intrinsically phase-stable multi-MHz retinal swept-source OCT and novel computational defocus and aberration correction methods. Single-acquisition imaging of photoreceptor cells, retinal nerve fiber layer, and retinal capillaries is presented across unprecedented imaging fields. By providing wide-field 3D cellular-resolution imaging in the human retina using a standard point-scan architecture routinely used in the clinic, this platform proposes a strategy for expanded utilization of high-resolution retinal imaging in both research and clinical settings.
Collapse
Affiliation(s)
- ByungKun Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sunhong Jeong
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Joosung Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Tae Shik Kim
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston 02140, USA
| | - Boy Braaf
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston 02140, USA
| | - Benjamin J. Vakoc
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston 02140, USA
| | - Wang-Yuhl Oh
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
7
|
Puyo L, Spahr H, Pfäffle C, Hüttmann G, Hillmann D. Retinal blood flow imaging with combined full-field swept-source optical coherence tomography and laser Doppler holography. OPTICS LETTERS 2022; 47:1198-1201. [PMID: 35230326 DOI: 10.1364/ol.449739] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Full-field swept-source optical coherence tomography (FF-SS-OCT) and laser Doppler holography (LDH) are two holographic imaging techniques presenting unique capabilities for ophthalmology. We report on interlaced FF-SS-OCT and LDH imaging with a single instrument. Effectively, retinal blood flow and pulsation could be quasi-simultaneously monitored. This instrument holds potential for a wide scope of ophthalmic applications.
Collapse
|
8
|
Javidi B, Carnicer A, Anand A, Barbastathis G, Chen W, Ferraro P, Goodman JW, Horisaki R, Khare K, Kujawinska M, Leitgeb RA, Marquet P, Nomura T, Ozcan A, Park Y, Pedrini G, Picart P, Rosen J, Saavedra G, Shaked NT, Stern A, Tajahuerce E, Tian L, Wetzstein G, Yamaguchi M. Roadmap on digital holography [Invited]. OPTICS EXPRESS 2021; 29:35078-35118. [PMID: 34808951 DOI: 10.1364/oe.435915] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/04/2021] [Indexed: 05/22/2023]
Abstract
This Roadmap article on digital holography provides an overview of a vast array of research activities in the field of digital holography. The paper consists of a series of 25 sections from the prominent experts in digital holography presenting various aspects of the field on sensing, 3D imaging and displays, virtual and augmented reality, microscopy, cell identification, tomography, label-free live cell imaging, and other applications. Each section represents the vision of its author to describe the significant progress, potential impact, important developments, and challenging issues in the field of digital holography.
Collapse
|
9
|
Leartprapun N, Adie SG. Resolution-enhanced OCT and expanded framework of information capacity and resolution in coherent imaging. Sci Rep 2021; 11:20541. [PMID: 34654877 PMCID: PMC8521598 DOI: 10.1038/s41598-021-99889-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/17/2021] [Indexed: 11/09/2022] Open
Abstract
Spatial resolution in conventional optical microscopy has traditionally been treated as a fixed parameter of the optical system. Here, we present an approach to enhance transverse resolution in beam-scanned optical coherence tomography (OCT) beyond its aberration-free resolution limit, without any modification to the optical system. Based on the theorem of invariance of information capacity, resolution-enhanced (RE)-OCT navigates the exchange of information between resolution and signal-to-noise ratio (SNR) by exploiting efficient noise suppression via coherent averaging and a simple computational bandwidth expansion procedure. We demonstrate a resolution enhancement of 1.5 × relative to the aberration-free limit while maintaining comparable SNR in silicone phantom. We show that RE-OCT can significantly enhance the visualization of fine microstructural features in collagen gel and ex vivo mouse brain. Beyond RE-OCT, our analysis in the spatial-frequency domain leads to an expanded framework of information capacity and resolution in coherent imaging that contributes new implications to the theory of coherent imaging. RE-OCT can be readily implemented on most OCT systems worldwide, immediately unlocking information that is beyond their current imaging capabilities, and so has the potential for widespread impact in the numerous areas in which OCT is utilized, including the basic sciences and translational medicine.
Collapse
Affiliation(s)
- Nichaluk Leartprapun
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Steven G Adie
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
10
|
Leitgeb R, Placzek F, Rank E, Krainz L, Haindl R, Li Q, Liu M, Andreana M, Unterhuber A, Schmoll T, Drexler W. Enhanced medical diagnosis for dOCTors: a perspective of optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210150-PER. [PMID: 34672145 PMCID: PMC8528212 DOI: 10.1117/1.jbo.26.10.100601] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/23/2021] [Indexed: 05/17/2023]
Abstract
SIGNIFICANCE After three decades, more than 75,000 publications, tens of companies being involved in its commercialization, and a global market perspective of about USD 1.5 billion in 2023, optical coherence tomography (OCT) has become one of the fastest successfully translated imaging techniques with substantial clinical and economic impacts and acceptance. AIM Our perspective focuses on disruptive forward-looking innovations and key technologies to further boost OCT performance and therefore enable significantly enhanced medical diagnosis. APPROACH A comprehensive review of state-of-the-art accomplishments in OCT has been performed. RESULTS The most disruptive future OCT innovations include imaging resolution and speed (single-beam raster scanning versus parallelization) improvement, new implementations for dual modality or even multimodality systems, and using endogenous or exogenous contrast in these hybrid OCT systems targeting molecular and metabolic imaging. Aside from OCT angiography, no other functional or contrast enhancing OCT extension has accomplished comparable clinical and commercial impacts. Some more recently developed extensions, e.g., optical coherence elastography, dynamic contrast OCT, optoretinography, and artificial intelligence enhanced OCT are also considered with high potential for the future. In addition, OCT miniaturization for portable, compact, handheld, and/or cost-effective capsule-based OCT applications, home-OCT, and self-OCT systems based on micro-optic assemblies or photonic integrated circuits will revolutionize new applications and availability in the near future. Finally, clinical translation of OCT including medical device regulatory challenges will continue to be absolutely essential. CONCLUSIONS With its exquisite non-invasive, micrometer resolution depth sectioning capability, OCT has especially revolutionized ophthalmic diagnosis and hence is the fastest adopted imaging technology in the history of ophthalmology. Nonetheless, OCT has not been completely exploited and has substantial growth potential-in academics as well as in industry. This applies not only to the ophthalmic application field, but also especially to the original motivation of OCT to enable optical biopsy, i.e., the in situ imaging of tissue microstructure with a resolution approaching that of histology but without the need for tissue excision.
Collapse
Affiliation(s)
- Rainer Leitgeb
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Medical University of Vienna, Christian Doppler Laboratory OPTRAMED, Vienna, Austria
| | - Fabian Placzek
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Elisabet Rank
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Lisa Krainz
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Richard Haindl
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Qian Li
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Mengyang Liu
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Marco Andreana
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Angelika Unterhuber
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Tilman Schmoll
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Carl Zeiss Meditec, Inc., Dublin, California, United States
| | - Wolfgang Drexler
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Address all correspondence to Wolfgang Drexler,
| |
Collapse
|
11
|
McKay GN, Niemeier RC, Castro-González C, Durr NJ. Scattering oblique plane microscopy for in-vivo blood cell imaging. BIOMEDICAL OPTICS EXPRESS 2021; 12:2575-2585. [PMID: 34123489 PMCID: PMC8176791 DOI: 10.1364/boe.422993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 05/10/2023]
Abstract
Oblique plane microscopy (OPM) enables high speed, volumetric fluorescence imaging through a single-objective geometry. While these advantages have positioned OPM as a valuable tool to probe biological questions in animal models, its potential for in vivo human imaging is largely unexplored due to its typical use with exogenous fluorescent dyes. Here we introduce a scattering-contrast oblique plane microscope (sOPM) and demonstrate label-free imaging of blood cells flowing through human capillaries in vivo. The sOPM illuminates a capillary bed in the ventral tongue with an oblique light sheet, and images side- and back- scattered signal from blood cells. By synchronizing the sOPM with a conventional capillaroscope, we acquire paired widefield and axial images of blood cells flowing through a capillary loop. The widefield capillaroscope image provides absorption contrast and confirms the presence of red blood cells (RBCs), while the sOPM image may aid in determining whether optical absorption gaps (OAGs) between RBCs have cellular or acellular composition. Further, we demonstrate consequential differences between fluorescence and scattering versions of OPM by imaging the same polystyrene beads sequentially with each technique. Lastly, we substantiate in vivo observations by imaging isolated red blood cells, white blood cells, and platelets in vitro using 3D agar phantoms. These results demonstrate a promising new avenue towards in vivo blood analysis.
Collapse
Affiliation(s)
- Gregory N. McKay
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ryan C. Niemeier
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Nicholas J. Durr
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
12
|
Everett M, Magazzeni S, Schmoll T, Kempe M. Optical coherence tomography: From technology to applications in ophthalmology. TRANSLATIONAL BIOPHOTONICS 2020. [DOI: 10.1002/tbio.202000012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
| | | | - Tilman Schmoll
- Carl Zeiss Meditec Inc. Dublin California USA
- Center for Medical Physics and Biomedical Engineering Medical University of Vienna Vienna Austria
| | | |
Collapse
|
13
|
Valente D, Vienola KV, Zawadzki RJ, Jonnal RS. Kilohertz retinal FF-SS-OCT and flood imaging with hardware-based adaptive optics. BIOMEDICAL OPTICS EXPRESS 2020; 11:5995-6011. [PMID: 33150001 PMCID: PMC7587251 DOI: 10.1364/boe.403509] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 05/18/2023]
Abstract
A retinal imaging system was designed for full-field (FF) swept-source (SS) optical coherence tomography (OCT) with cellular resolution. The system incorporates a real-time adaptive optics (AO) subsystem and a very high-speed CMOS sensor, and is capable of acquiring volumetric images of the retina at rates up to 1 kHz. While digital aberration correction (DAC) is an attractive potential alternative to AO, it has not yet been shown to provide resolution allowing visualization of cones in the fovea, where early detection of functional deficits is most critical. Here we demonstrate that FF-SS-OCT with hardware AO permits resolution of foveal cones, imaged at eccentricities of 1° and 2°, with volume rates adequate to measure light-evoked changes in photoreceptors. With the reference arm blocked, the system can operate as a kilohertz AO flood illumination fundus camera with adjustable temporal coherence and is expected to allow measurement of light-evoked changes caused by common path interference in photoreceptor outer segments (OS). In this paper, we describe the system's optical design, characterize its performance, and demonstrate its ability to produce images of the human photoreceptor mosaic.
Collapse
Affiliation(s)
- Denise Valente
- Vision Science and Advanced Retinal Imaging Laboratory (VSRI), Department of Ophthalmology and Vision Science, University of California Davis, Sacramento, CA 95817, USA
| | - Kari V. Vienola
- Vision Science and Advanced Retinal Imaging Laboratory (VSRI), Department of Ophthalmology and Vision Science, University of California Davis, Sacramento, CA 95817, USA
| | - Robert J. Zawadzki
- Vision Science and Advanced Retinal Imaging Laboratory (VSRI), Department of Ophthalmology and Vision Science, University of California Davis, Sacramento, CA 95817, USA
- EyePod Small Animal Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
| | - Ravi S. Jonnal
- Vision Science and Advanced Retinal Imaging Laboratory (VSRI), Department of Ophthalmology and Vision Science, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
14
|
Bedggood P, Metha A. Recovering the appearance of the capillary blood column from under-sampled flow data. OPTICS LETTERS 2020; 45:4320-4323. [PMID: 32735288 DOI: 10.1364/ol.398168] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
The regular spacing of cells in capillary flow results in spurious cell trajectories if the sampling rate is too low. This makes it difficult to identify cells, even if the velocity is known. Here, we demonstrate a software method to overcome this problem and validate it using high frame rate data with known velocity, which is downsampled to produce aliasing. The method assumes high spatial sampling, constant velocity over short epochs, and an incompressible blood column. Data in successive frames are shifted along the capillary tube axis according to the flow velocity, faithfully rendering cells and plasma. The velocity estimate, required as input to this procedure, can be obtained from either a) the blind optimization of a simple heuristic, or b) a recently proposed velocimetry algorithm, which appears to extend the aliasing limit.
Collapse
|
15
|
Bianconi S, Mohseni H. Recent advances in infrared imagers: toward thermodynamic and quantum limits of photon sensitivity. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2020; 83:044101. [PMID: 32018242 PMCID: PMC7282310 DOI: 10.1088/1361-6633/ab72e5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Infrared detection and imaging are key enabling technologies for a vast number of applications, ranging from communication, to medicine and astronomy, and have recently attracted interest for their potential application in optical interconnects and quantum computing. Nonetheless, infrared detection still constitutes the performance bottleneck for several of these applications, due to a number of unsolved challenges, such as limited quantum efficiency, yield and scalability of the devices, as well as limited sensitivity and low operating temperatures. The current commercially dominating technologies are based on planar semiconducting PIN or avalanche detectors. However, recent developments in semiconductor technology and nano-scale materials have enabled significant technological advancement, demonstrating the potential for groundbreaking achievements in the field. We review the recent progress in the most prominent novel detection technologies, and evaluate their advantages, limitations, and prospects. We further offer a perspective on the main fundamental limits on the detectors sensitivity, and we discuss the technological challenges that need to be addressed for significative advancement of the field. Finally, we present a set of potential system-wide strategies, including nanoscale and low-dimensional detectors, light coupling enhancement strategies, advanced read-out circuitry, neuromorphic and curved image sensors, aimed at improving the overall imagers performance.
Collapse
Affiliation(s)
- Simone Bianconi
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, United States of America
| | | |
Collapse
|
16
|
Ogien J, Levecq O, Azimani H, Dubois A. Dual-mode line-field confocal optical coherence tomography for ultrahigh-resolution vertical and horizontal section imaging of human skin in vivo. BIOMEDICAL OPTICS EXPRESS 2020; 11:1327-1335. [PMID: 32206413 PMCID: PMC7075601 DOI: 10.1364/boe.385303] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 05/21/2023]
Abstract
Line-field confocal optical coherence tomography (LC-OCT) is a recently introduced technique for ultrahigh-resolution vertical section (B-scan) imaging of human skin in vivo. This work presents a new implementation of the LC-OCT technique to obtain horizontal section images (C-scans) in addition to B-scans. C-scan imaging is achieved with this dual-mode LC-OCT system using a mirror galvanometer for lateral scanning along with a piezoelectric chip for modulation of the interferometric signal. A quasi-identical spatial resolution of ∼ 1 µm is measured for both B-scans and C-scans. The images are acquired in both modes at a rate of 10 frames per second. The horizontal field of view of the C-scans is 1.2 × 0.5 mm2, identical to the vertical field of view of the B-scans. The user can switch between the two modes by clicking a button. In vivo cellular-resolution imaging of human skin is demonstrated in both B-scan and C-scan modes, with the possibility to navigate within the skin tissues in real time.
Collapse
Affiliation(s)
- Jonas Ogien
- DAMAE Medical, 28 rue de Turbigo, 75003 Paris, France
| | | | | | - Arnaud Dubois
- DAMAE Medical, 28 rue de Turbigo, 75003 Paris, France
- Université Paris-Saclay, Institut d’Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127 Palaiseau, France
| |
Collapse
|
17
|
Puyo L, Paques M, Fink M, Sahel JA, Atlan M. Waveform analysis of human retinal and choroidal blood flow with laser Doppler holography. BIOMEDICAL OPTICS EXPRESS 2019; 10:4942-4963. [PMID: 31646021 PMCID: PMC6788604 DOI: 10.1364/boe.10.004942] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/14/2019] [Accepted: 06/27/2019] [Indexed: 05/20/2023]
Abstract
Laser Doppler holography was introduced as a full-field imaging technique to measure blood flow in the retina and choroid with an as yet unrivaled temporal resolution. We here investigate separating the different contributions to the power Doppler signal in order to isolate the flow waveforms of vessels in the posterior pole of the human eye. Distinct flow behaviors are found in retinal arteries and veins with seemingly interrelated waveforms. We demonstrate a full field mapping of the local resistivity index, and the possibility to perform unambiguous identification of retinal arteries and veins on the basis of their systolodiastolic variations. Finally we investigate the arterial flow waveforms in the retina and choroid and find synchronous and similar waveforms, although with a lower pulsatility in choroidal arteries. This work demonstrates the potential held by laser Doppler holography to study ocular hemodynamics in healthy and diseased eyes.
Collapse
Affiliation(s)
- Léo Puyo
- Institut Langevin, Centre National de la Recherche Scientifique (CNRS), Paris Sciences & Lettres (PSL University), École Supérieure de Physique et de Chimie Industrielles (ESPCI Paris) - 1 rue Jussieu, 75005 Paris, France
- Paris Adaptive Optics, Retinal Imaging, and Surgery, Paris, France
| | - Michel Paques
- Paris Adaptive Optics, Retinal Imaging, and Surgery, Paris, France
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 1423, 28 rue de Charenton, 75012 Paris, France
- Institut de la Vision-Sorbonne Universités, 17 rue Moreau, 75012 Paris, France
| | - Mathias Fink
- Institut Langevin, Centre National de la Recherche Scientifique (CNRS), Paris Sciences & Lettres (PSL University), École Supérieure de Physique et de Chimie Industrielles (ESPCI Paris) - 1 rue Jussieu, 75005 Paris, France
- Paris Adaptive Optics, Retinal Imaging, and Surgery, Paris, France
| | - José-Alain Sahel
- Paris Adaptive Optics, Retinal Imaging, and Surgery, Paris, France
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 1423, 28 rue de Charenton, 75012 Paris, France
- Institut de la Vision-Sorbonne Universités, 17 rue Moreau, 75012 Paris, France
| | - Michael Atlan
- Institut Langevin, Centre National de la Recherche Scientifique (CNRS), Paris Sciences & Lettres (PSL University), École Supérieure de Physique et de Chimie Industrielles (ESPCI Paris) - 1 rue Jussieu, 75005 Paris, France
- Paris Adaptive Optics, Retinal Imaging, and Surgery, Paris, France
| |
Collapse
|
18
|
Chung J, Martinez GW, Lencioni KC, Sadda SR, Yang C. Computational aberration compensation by coded-aperture-based correction of aberration obtained from optical Fourier coding and blur estimation. OPTICA 2019; 6:647-661. [PMID: 33134437 PMCID: PMC7597901 DOI: 10.1364/optica.6.000647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We report a novel generalized optical measurement system and computational approach to determine and correct aberrations in optical systems. The system consists of a computational imaging method capable of reconstructing an optical system's pupil function by adapting overlapped Fourier coding to an incoherent imaging modality. It recovers the high-resolution image latent in an aberrated image via deconvolution. The deconvolution is made robust to noise by using coded apertures to capture images. We term this method coded-aperture-based correction of aberration obtained from overlapped Fourier coding and blur estimation (CACAO-FB). It is well-suited for various imaging scenarios where aberration is present and where providing a spatially coherent illumination is very challenging or impossible. We report the demonstration of CACAO-FB with a variety of samples including an in vivo imaging experiment on the eye of a rhesus macaque to correct for its inherent aberration in the rendered retinal images. CACAO-FB ultimately allows for an aberrated imaging system to achieve diffraction-limited performance over a wide field of view by casting optical design complexity to computational algorithms in post-processing.
Collapse
Affiliation(s)
- Jaebum Chung
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
- Corresponding author:
| | - Gloria W. Martinez
- Office of Laboratory Animal Resources, California Institute of Technology, Pasadena, California 91125, USA
| | - Karen C. Lencioni
- Office of Laboratory Animal Resources, California Institute of Technology, Pasadena, California 91125, USA
| | - Srinivas R. Sadda
- Doheny Eye Institute, University of California-Los Angeles, Los Angeles, California 90033, USA
| | - Changhuei Yang
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
19
|
Leitgeb RA. En face optical coherence tomography: a technology review [Invited]. BIOMEDICAL OPTICS EXPRESS 2019; 10:2177-2201. [PMID: 31143489 PMCID: PMC6524600 DOI: 10.1364/boe.10.002177] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 05/20/2023]
Abstract
A review on the technological development of en face optical coherence tomography (OCT) and optical coherence microscopy (OCM) is provided. The terminology originally referred to time domain OCT, where the preferential scanning was performed in the en face plane. Potentially the fastest realization of en face image recording is full-field OCT, where the full en face plane is illuminated and recorded simultaneously. The term has nowadays been adopted for high-speed Fourier domain approaches, where the en face image is reconstructed from full 3D volumes either by direct slicing or through axial projection in post processing. The success of modern en face OCT lies in its immediate and easy image interpretation, which is in particular of advantage for OCM or OCT angiography. Applications of en face OCT with a focus on ophthalmology are presented. The review concludes by outlining exciting technological prospects of en face OCT based both on time as well as on Fourier domain OCT.
Collapse
Affiliation(s)
- R A Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Christian Doppler Laboratory for Innovative Optical Imaging and its Translation to Medicine, Medical University Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
20
|
Tan B, Hosseinaee Z, Han L, Kralj O, Sorbara L, Bizheva K. 250 kHz, 1.5 µm resolution SD-OCT for in-vivo cellular imaging of the human cornea. BIOMEDICAL OPTICS EXPRESS 2018; 9:6569-6583. [PMID: 31065450 PMCID: PMC6490998 DOI: 10.1364/boe.9.006569] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 05/18/2023]
Abstract
We present the first spectral domain optical coherence tomography (SD-OCT) system that combines an isotropic imaging resolution of ~1.5 µm in biological tissue with a 250 kHz image acquisition rate, for in vivo non-contact, volumetric imaging of the cellular structure of the human cornea. OCT images of the healthy human cornea acquired with this system reveal the cellular structure of the corneal epithelium, cellular debris and mucin clusters in the tear film, the shape, size and spatial distribution of the sub-basal corneal nerves and keratocytes in the corneal stroma, as well as reflections from endothelial nuclei. The corneal images presented here demonstrate the potential clinical value of the new high speed, high resolution OCT system for non-invasive diagnostics and monitoring the treatment of corneal diseases.
Collapse
Affiliation(s)
- Bingyao Tan
- Department of Physics and Astronomy, University of Waterloo, Ontario, N2L 3G1, Canada
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore
| | - Zohreh Hosseinaee
- Department of Physics and Astronomy, University of Waterloo, Ontario, N2L 3G1, Canada
- Department of System Design Engineering, University of Waterloo, Ontario, N2L 3G1, Canada
| | - Le Han
- Department of Physics and Astronomy, University of Waterloo, Ontario, N2L 3G1, Canada
| | - Olivera Kralj
- Department of Physics and Astronomy, University of Waterloo, Ontario, N2L 3G1, Canada
| | - Luigina Sorbara
- School of Optometry and Vision Science, University of Waterloo, Ontario, N2L 3G1, Canada
| | - Kostadinka Bizheva
- Department of Physics and Astronomy, University of Waterloo, Ontario, N2L 3G1, Canada
- Department of System Design Engineering, University of Waterloo, Ontario, N2L 3G1, Canada
- School of Optometry and Vision Science, University of Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
21
|
Cooperative Three-View Imaging Optical Coherence Tomography for Intraoperative Vascular Evaluation. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8091551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Real-time intraoperative optical coherence tomography (OCT) imaging of blood vessels after anastomosis operation can provide important information the vessel, such as patency, flow speed, and thrombosis morphology. Due to the strong scattering and absorption effect of blood, normal OCT imaging suffers from the problem of incomplete cross-sectional view of the vessel under investigation when the diameter is large. In this work, we present a novel cooperative three-view imaging spectral domain optical coherence tomography system for intraoperative exposed vascular imaging. Two more side views (left view and right view) were realized through a customized sample arm optical design and corresponding mechanical design and fabrication, which could generate cross-sectional images from three circumferential view directions to achieve a larger synthetic field of view (FOV). For each view, the imaging depth was 6.7 mm (in air) and the lateral scanning range was designed to be 3 mm. Therefore, a shared synthetic rectangle FOV of 3 mm × 3 mm was achieved through cooperative three view scanning. This multi-view imaging method can meet the circumferential imaging demands of vessels with an outer diameter less than 3 mm. Both phantom tube and rat vessel imaging confirmed the increased system FOV performance. We believe the intraoperative application of this cooperative three-imaging optical coherence tomography for objective vascular anastomosis evaluation can benefit patient outcomes in the future.
Collapse
|
22
|
Puyo L, Paques M, Fink M, Sahel JA, Atlan M. In vivo laser Doppler holography of the human retina. BIOMEDICAL OPTICS EXPRESS 2018; 9:4113-4129. [PMID: 30615709 PMCID: PMC6157768 DOI: 10.1364/boe.9.004113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 05/20/2023]
Abstract
The eye offers a unique opportunity for the non-invasive exploration of cardiovascular diseases. Optical angiography in the retina requires sensitive measurements, which hinders conventional full-field laser Doppler imaging schemes. To overcome this limitation, we used digital holography to perform laser Doppler perfusion imaging of human retina with near-infrared light. Two imaging channels with a slow and a fast CMOS camera were used simultaneously for real-time narrowband measurements, and offline wideband measurements, respectively. The beat frequency spectrum of optical interferograms recorded with the fast (up to 75 kHz) CMOS camera was analyzed by short-time Fourier transformation. Power Doppler images drawn from the Doppler power spectrum density qualitatively revealed blood flow in retinal vessels over 512 × 512 pixels covering 2.4 × 2.4 mm2 on the retina with a temporal resolution down to 1.6 ms. The sensitivity to lateral motion as well as the requirements in terms of sampling frequency are discussed.
Collapse
Affiliation(s)
- L. Puyo
- Institut Langevin, Centre National de la Recherche Scientifique (CNRS), Paris Sciences & Lettres (PSL Research University), École Supérieure de Physique et de Chimie Industrielles (ESPCI Paris) - 1 rue Jussieu, 75005 Paris,
France
| | - M. Paques
- Institut de la Vision, INSERM UMR-S 968, CNRS UMR 7210, UPMC, 17 rue Moreau, 75012 Paris,
France
- Centre d’Investigation Clinique (CIC) Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, INSERM, 28 rue de Charenton, 75012 Paris,
France
| | - M. Fink
- Institut Langevin, Centre National de la Recherche Scientifique (CNRS), Paris Sciences & Lettres (PSL Research University), École Supérieure de Physique et de Chimie Industrielles (ESPCI Paris) - 1 rue Jussieu, 75005 Paris,
France
| | - J.-A. Sahel
- Institut de la Vision, INSERM UMR-S 968, CNRS UMR 7210, UPMC, 17 rue Moreau, 75012 Paris,
France
- Centre d’Investigation Clinique (CIC) Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, INSERM, 28 rue de Charenton, 75012 Paris,
France
| | - M. Atlan
- Institut Langevin, Centre National de la Recherche Scientifique (CNRS), Paris Sciences & Lettres (PSL Research University), École Supérieure de Physique et de Chimie Industrielles (ESPCI Paris) - 1 rue Jussieu, 75005 Paris,
France
| |
Collapse
|
23
|
Sudkamp H, Hillmann D, Koch P, Endt MV, Spahr H, Münst M, Pfäffle C, Birngruber R, Hüttmann G. Simple approach for aberration-corrected OCT imaging of the human retina. OPTICS LETTERS 2018; 43:4224-4227. [PMID: 30160757 DOI: 10.1364/ol.43.004224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Aberration-corrected imaging of human photoreceptor cells, whether hardware or software based, presently requires a complex and expensive setup. Here we use a simple and inexpensive off-axis full-field time-domain optical coherence tomography (OCT) approach to acquire volumetric data of an in vivo human retina. Full volumetric data are recorded in 1.3 s. After computationally correcting for aberrations, single photoreceptor cells were visualized. In addition, the numerical correction of ametropia is demonstrated. Our implementation of full-field optical coherence tomography combines a low technical complexity with the possibility for computational image correction.
Collapse
|