1
|
Label-free viability assay using in-line holographic video microscopy. Sci Rep 2022; 12:12746. [PMID: 35882977 PMCID: PMC9325748 DOI: 10.1038/s41598-022-17098-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/20/2022] [Indexed: 01/05/2023] Open
Abstract
Total holographic characterization (THC) is presented here as an efficient, automated, label-free method of accurately identifying cell viability. THC is a single-particle characterization technology that determines the size and index of refraction of individual particles using the Lorenz-Mie theory of light scattering. Although assessment of cell viability is a challenge in many applications, including biologics manufacturing, traditional approaches often include unreliable labeling with dyes and/or time consuming methods of manually counting cells. In this work we measured the viability of Saccharomyces cerevisiae yeast in the presence of various concentrations of isopropanol as a function of time. All THC measurements were performed in the native environment of the sample with no dilution or addition of labels. Holographic measurements were made with an in-line holographic microscope using a 40[Formula: see text] objective lens with plane wave illumination. We compared our results with THC to manual counting of living and dead cells as distinguished with trypan blue dye. Our findings demonstrate that THC can effectively distinguish living and dead yeast cells by the index of refraction of individual cells.
Collapse
|
2
|
Martin C, Leahy B, Manoharan VN. Improving holographic particle characterization by modeling spherical aberration. OPTICS EXPRESS 2021; 29:18212-18223. [PMID: 34154082 DOI: 10.1364/oe.424043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Holographic microscopy combined with forward modeling and inference allows colloidal particles to be characterized and tracked in three dimensions with high precision. However, current models ignore the effects of optical aberrations on hologram formation. We investigate the effects of spherical aberration on the structure of single-particle holograms and on the accuracy of particle characterization. We find that in a typical experimental setup, spherical aberration can result in systematic shifts of about 2% in the inferred refractive index and radius. We show that fitting with a model that accounts for spherical aberration decreases this aberration-dependent error by a factor of two or more, even when the level of spherical aberration in the optical train is unknown. With the new generative model, the inferred parameters are consistent across different levels of aberration, making particle characterization more robust.
Collapse
|
3
|
Barkley S, Dimiduk TG, Fung J, Kaz DM, Manoharan VN, McGorty R, Perry RW, Wang A. Holographic Microscopy With Python and HoloPy. Comput Sci Eng 2020. [DOI: 10.1109/mcse.2019.2923974] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
4
|
Leahy B, Alexander R, Martin C, Barkley S, Manoharan VN. Large depth-of-field tracking of colloidal spheres in holographic microscopy by modeling the objective lens. OPTICS EXPRESS 2020; 28:1061-1075. [PMID: 32121823 DOI: 10.1364/oe.382159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Holographic microscopy has developed into a powerful tool for 3D particle tracking, yielding nanometer-scale precision at high frame rates. However, current particle tracking algorithms ignore the effect of the microscope objective on the formation of the recorded hologram. As a result, particle tracking in holographic microscopy is currently limited to particles well above the microscope focus. Here, we show that modeling the effect of an aberration-free lens allows tracking of particles above, near, and below the focal plane in holographic microscopy, doubling the depth of field. Finally, we use our model to determine the conditions under which ignoring the effect of the lens is justified and in what conditions it leads to systematic errors.
Collapse
|
5
|
Yücel H, Okumuşoğlu NT. A new tracking algorithm for multiple colloidal particles close to contact. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:465101. [PMID: 28972202 DOI: 10.1088/1361-648x/aa908e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this paper, we propose a new algorithm based on radial symmetry center method to track colloidal particles close to contact, where the optical images of the particles start to overlap in digital video microscopy. This overlapping effect is important to observe the pair interaction potential in colloidal studies and it appears as additional interaction in the measurement of the interaction with conventional tracking analysis. The proposed algorithm in this work is simple, fast and applicable for not only two particles but also three and more particles without any modification. The algorithm uses gradient vectors of the particle intensity distribution, which allows us to use a part of the symmetric intensity distribution in the calculation of the actual particle position. In this study, simulations are performed to see the performance of the proposed algorithm for two and three particles, where the simulation images are generated by using fitted curve to experimental particle image for different sized particles. As a result, the algorithm yields the maximum error smaller than 2 nm for [Formula: see text] μm silica particles in contact condition.
Collapse
Affiliation(s)
- Harun Yücel
- Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139, Samsun, Turkey
| | | |
Collapse
|
6
|
Wang A, Rogers WB, Manoharan VN. Effects of Contact-Line Pinning on the Adsorption of Nonspherical Colloids at Liquid Interfaces. PHYSICAL REVIEW LETTERS 2017; 119:108004. [PMID: 28949187 DOI: 10.1103/physrevlett.119.108004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Indexed: 05/20/2023]
Abstract
The effects of contact-line pinning are well known in macroscopic systems but are only just beginning to be explored at the microscale in colloidal suspensions. We use digital holography to capture the fast three-dimensional dynamics of micrometer-sized ellipsoids breaching an oil-water interface. We find that the particle angle varies approximately linearly with the height, in contrast to results from simulations based on the minimization of the interfacial energy. Using a simple model of the motion of the contact line, we show that the observed coupling between translational and rotational degrees of freedom is likely due to contact-line pinning. We conclude that the dynamics of colloidal particles adsorbing to a liquid interface are not determined by the minimization of interfacial energy and viscous dissipation alone; contact-line pinning dictates both the time scale and pathway to equilibrium.
Collapse
Affiliation(s)
- Anna Wang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - W Benjamin Rogers
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Vinothan N Manoharan
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
7
|
Wang A, McGorty R, Kaz DM, Manoharan VN. Contact-line pinning controls how quickly colloidal particles equilibrate with liquid interfaces. SOFT MATTER 2016; 12:8958-8967. [PMID: 27734049 DOI: 10.1039/c6sm01690a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Previous experiments have shown that spherical colloidal particles relax to equilibrium slowly after they adsorb to a liquid-liquid interface, despite the large interfacial energy gradient driving the adsorption. The slow relaxation has been explained in terms of transient pinning and depinning of the contact line on the surface of the particles. However, the nature of the pinning sites has not been investigated in detail. We use digital holographic microscopy to track a variety of colloidal spheres-inorganic and organic, charge-stabilized and sterically stabilized, aqueous and non-aqueous-as they breach liquid interfaces. We find that nearly all of these particles relax logarithmically in time over timescales much larger than those expected from viscous dissipation alone. By comparing our results to theoretical models of the pinning dynamics, we infer the area per defect to be on the order of a few square nanometers for each of the colloids we examine, whereas the energy per defect can vary from a few kT for non-aqueous and inorganic spheres to tens of kT for aqueous polymer particles. The results suggest that the likely pinning sites are topographical features inherent to colloidal particles-surface roughness in the case of silica particles and grafted polymer "hairs" in the case of polymer particles. We conclude that the slow relaxation must be taken into account in experiments and applications, such as Pickering emulsions, that involve colloids attaching to interfaces. The effect is particularly important for aqueous polymer particles, which pin the contact line strongly.
Collapse
Affiliation(s)
- Anna Wang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | - Ryan McGorty
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - David M Kaz
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Vinothan N Manoharan
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA. and Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
8
|
Dimiduk TG, Manoharan VN. Bayesian approach to analyzing holograms of colloidal particles. OPTICS EXPRESS 2016; 24:24045-24060. [PMID: 27828236 DOI: 10.1364/oe.24.024045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We demonstrate a Bayesian approach to tracking and characterizing colloidal particles from in-line digital holograms. We model the formation of the hologram using Lorenz-Mie theory. We then use a tempered Markov-chain Monte Carlo method to sample the posterior probability distributions of the model parameters: particle position, size, and refractive index. Compared to least-squares fitting, our approach allows us to more easily incorporate prior information about the parameters and to obtain more accurate uncertainties, which are critical for both particle tracking and characterization experiments. Our approach also eliminates the need to supply accurate initial guesses for the parameters, so it requires little tuning.
Collapse
|
9
|
Wang A, Garmann RF, Manoharan VN. Tracking E. coli runs and tumbles with scattering solutions and digital holographic microscopy. OPTICS EXPRESS 2016; 24:23719-23725. [PMID: 27828208 DOI: 10.1364/oe.24.023719] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We use in-line digital holographic microscopy to image freely swimming E. coli. We show that fitting a light scattering model to E. coli holograms can yield quantitative information about the bacterium's body rotation and tumbles, offering a precise way to track fine details of bacterial motility. We are able to extract the cell's three-dimensional (3D) position and orientation and recover behavior such as body angle rotation during runs, tumbles, and pole reversal. Our technique is label-free and capable of frame rates limited only by the camera.
Collapse
|
10
|
Constructing a magnetic tweezers to monitor RNA translocation at the single-molecule level. Methods Mol Biol 2015; 1259:257-73. [PMID: 25579591 DOI: 10.1007/978-1-4939-2214-7_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Single-molecule methods have become an invaluable tool in the investigation of the mechanisms of nucleic-acid motors. Magnetic tweezers is a single-molecule manipulation technique that permits the real-time measurement of enzyme activities on single nucleic-acid molecules at high-resolution, high-throughput, and inherently constant force. Here, we describe several aspects of the implementation of magnetic tweezers, with special emphasis on the construction of a simple magnetic trap and, in particular, on the detailed description of image analysis methods to measure the extension changes in nucleic-acid molecules induced by protein activity. Finally, we carefully describe the steps involved in performing a full magnetic tweezers experiment.
Collapse
|
11
|
Dimiduk TG, Perry RW, Fung J, Manoharan VN. Random-subset fitting of digital holograms for fast three-dimensional particle tracking [invited]. APPLIED OPTICS 2014; 53:G177-G183. [PMID: 25322127 DOI: 10.1364/ao.53.00g177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/19/2014] [Indexed: 06/04/2023]
Abstract
Fitting scattering solutions to time series of digital holograms is a precise way to measure three-dimensional dynamics of microscale objects such as colloidal particles. However, this inverse-problem approach is computationally expensive. We show that the computational time can be reduced by an order of magnitude or more by fitting to a random subset of the pixels in a hologram. We demonstrate our algorithm on experimentally measured holograms of micrometer-scale colloidal particles, and we show that 20-fold increases in speed, relative to fitting full frames, can be attained while introducing errors in the particle positions of 10 nm or less. The method is straightforward to implement and works for any scattering model. It also enables a parallelization strategy wherein random-subset fitting is used to quickly determine initial guesses that are subsequently used to fit full frames in parallel. This approach may prove particularly useful for studying rare events, such as nucleation, that can only be captured with high frame rates over long times.
Collapse
|
12
|
Trattner S, Kashdan E, Feigin M, Sochen N. Image formation of thick three-dimensional objects in differential-interference-contrast microscopy. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2014; 31:968-980. [PMID: 24979629 DOI: 10.1364/josaa.31.000968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The differential-interference-contrast (DIC) microscope is of widespread use in life sciences as it enables noninvasive visualization of transparent objects. The goal of this work is to model the image formation process of thick three-dimensional objects in DIC microscopy. The model is based on the principles of electromagnetic wave propagation and scattering. It simulates light propagation through the components of the DIC microscope to the image plane using a combined geometrical and physical optics approach and replicates the DIC image of the illuminated object. The model is evaluated by comparing simulated images of three-dimensional spherical objects with the recorded images of polystyrene microspheres. Our computer simulations confirm that the model captures the major DIC image characteristics of the simulated object, and it is sensitive to the defocusing effects.
Collapse
|
13
|
Chang AT, Chang YR, Chi S, Hsu L. Optimization of probe-laser focal offsets for single-particle tracking. APPLIED OPTICS 2012; 51:5643-5648. [PMID: 22885576 DOI: 10.1364/ao.51.005643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 07/09/2012] [Indexed: 06/01/2023]
Abstract
In optical tweezers applications, tracking a trapped particle is essential for force measurement. One of the most popular techniques for single-particle tracking is achieved by analyzing the forward and backward light pattern, scattered by the target particle trapped by a trap laser beam, of an additional probe-laser beam with different wavelength whose focus is slightly apart from the trapping center. However, the optimized focal offset has never been discussed. In this paper, we investigate the tracking range and sensitivity as a function of the focal offset between the trapping and the probe-laser beams. As a result, the optimized focal offsets are a 3.3-fold radius ahead and a 2.0-fold radius behind the trapping laser focus in the forward tracking and the backward tracking, respectively. The experimental result agrees well with a theoretical prediction using the Mie scattering theory.
Collapse
Affiliation(s)
- Ai-Tang Chang
- Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan.
| | | | | | | |
Collapse
|
14
|
Lionnet T, Allemand JF, Revyakin A, Strick TR, Saleh OA, Bensimon D, Croquette V. Single-molecule studies using magnetic traps. Cold Spring Harb Protoc 2012; 2012:34-49. [PMID: 22194259 DOI: 10.1101/pdb.top067488] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In recent years, techniques have been developed to study and manipulate single molecules of DNA and other biopolymers. In one such technique, the magnetic trap, a single DNA molecule is bound at one end to a glass surface and at the other to a magnetic microbead. Small magnets, whose position and rotation can be controlled, pull on and rotate the microbead. This provides a simple method to stretch and twist the molecule. The system allows one to apply and measure forces ranging from 10(-3) to >100 pN. In contrast to other techniques, the force measurement is absolute and does not require calibration of the sensor. In this article, we describe the principle of the magnetic trap, as well as its use in the measurement of the elastic properties of DNA and the study of DNA-protein interactions.
Collapse
|
15
|
Gutsche C, Elmahdy MM, Kegler K, Semenov I, Stangner T, Otto O, Ueberschär O, Keyser UF, Krueger M, Rauscher M, Weeber R, Harting J, Kim YW, Lobaskin V, Netz RR, Kremer F. Micro-rheology on (polymer-grafted) colloids using optical tweezers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2011; 23:184114. [PMID: 21508470 DOI: 10.1088/0953-8984/23/18/184114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Optical tweezers are experimental tools with extraordinary resolution in positioning (± 1 nm) a micron-sized colloid and in the measurement of forces (± 50 fN) acting on it-without any mechanical contact. This enables one to carry out a multitude of novel experiments in nano- and microfluidics, of which the following will be presented in this review: (i) forces within single pairs of colloids in media of varying concentration and valency of the surrounding ionic solution, (ii) measurements of the electrophoretic mobility of single colloids in different solvents (concentration, valency of the ionic solution and pH), (iii) similar experiments as in (i) with DNA-grafted colloids, (iv) the nonlinear response of single DNA-grafted colloids in shear flow and (v) the drag force on single colloids pulled through a polymer solution. The experiments will be described in detail and their analysis discussed.
Collapse
Affiliation(s)
- C Gutsche
- Institute of Experimental Physics I, Leipzig University, Linnéstrasse 5, D-04103, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gineste JM, Macko P, Patterson EA, Whelan MP. Three-dimensional automated nanoparticle tracking using Mie scattering in an optical microscope. J Microsc 2011; 243:172-8. [PMID: 21375530 DOI: 10.1111/j.1365-2818.2011.03491.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The forward scattering of light in a conventional inverted optical microscope by nanoparticles ranging in diameter from 10 to 50nm has been used to automatically and quantitatively identify and track their location in three-dimensions with a temporal resolution of 200ms. The standard deviation of the location of nominally stationary 50-nm-diameter nanoparticles was found to be about 50nm along the light path and about 5nm in the plane perpendicular to the light path. The method is based on oscillating the microscope objective along the light path using a piezo actuator and acquiring images with the condenser aperture closed to a minimum to enhance the effects of diffraction. Data processing in the time and spatial domains allowed the location of particles to be obtained automatically so that the technique has potential applications both in the processing of nanoparticles and in their use in a variety of fields including nanobiotechnology, pharmaceuticals and food processing where a simple optical microscope maybe preferred for a variety of reasons.
Collapse
Affiliation(s)
- J-M Gineste
- Systems Toxicology Unit, Institute for Health and Consumer Protection, European Commission DG Joint Research Centre, Italy
| | | | | | | |
Collapse
|
17
|
Abstract
Magnetic tweezers provide a versatile tool enabling the application of force and torque on individual biomolecules. Magnetic tweezers are uniquely suited to the study of DNA topology and protein-DNA interactions that modify DNA topology. Perhaps due to its presumed simplicity, magnetic tweezers instrumentation has been described in less detail than comparable techniques. Here, we provide a comprehensive description and guide for the design and implementation of a magnetic tweezers instrument for single-molecule measurements of DNA topology and mechanics. We elucidate magnetic trap design, as well as microscope and illumination setup, and provide a simple LabVIEW-based real-time position tracking algorithm. In addition, we provide procedures for production of supercoilable DNA tethers, flow-cell design, and construction tips.
Collapse
|
18
|
Gutsche C, Kremer F, Krüger M, Rauscher M, Weeber R, Harting J. Colloids dragged through a polymer solution: Experiment, theory, and simulation. J Chem Phys 2009; 129:084902. [PMID: 19044848 DOI: 10.1063/1.2965127] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present microrheological measurements of the drag force on colloids pulled through a solution of lambda-DNA (used here as a monodisperse model polymer) with an optical tweezer. The experiments show a drag force that is larger than expected from the Stokes formula and the independently measured viscosity of the DNA solution. We attribute this to the accumulation of DNA in front of the colloid and the reduced DNA density behind the colloid. This hypothesis is corroborated by a simple drift-diffusion model for the DNA molecules, which reproduces the experimental data surprisingly well, as well as by corresponding Brownian dynamics simulations.
Collapse
Affiliation(s)
- Christof Gutsche
- Institut für Experimentalphysik I, Universität Leipzig, 04103 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Gutsche C, Keyser UF, Kegler K, Kremer F, Linse P. Forces between single pairs of charged colloids in aqueous salt solutions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 76:031403. [PMID: 17930243 DOI: 10.1103/physreve.76.031403] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 06/29/2007] [Indexed: 05/25/2023]
Abstract
Forces between single pairs of negatively charged micrometer-sized colloids in aqueous solutions of monovalent, divalent, or trivalent counter-ions at varying concentrations have been measured by employing optical tweezers. The experimental data have been analyzed by using the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory and a numerical solution of the Poisson-Boltzmann (PB) equation. With monovalent counterions, the data are well described by the DLVO and PB theories, suggesting that the DLVO theory is adequate to describe the colloidal forces at these conditions. At higher counter-ion valence, the approximations within the two theories become evident.
Collapse
Affiliation(s)
- C Gutsche
- Institut für Experimentelle Physik I der Universität Leipzig, Germany
| | | | | | | | | |
Collapse
|
20
|
Kvarnström M, Glasbey CA. Estimation of Centres and Radial Intensity Profiles of Spherical Nano-Particles in Digital Microscopy. Biom J 2007; 49:300-11. [PMID: 17476951 DOI: 10.1002/bimj.200510260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Control of the microscopic characteristics of colloidal systems is critical in a wealth of application areas, ranging from food to pharmaceuticals. To assist in estimating these characteristics, we present a method for estimating the positions of spherical nano-particles in digital microscopy images. The radial intensity profiles of particles, which depend on the distances of the particles from the focal plane of the light microscope and have no closed functional form, are modelled using a local quadratic kernel estimate. We also allow for the case where pixel values are censored at an upper limit of 255. Standard errors of centre estimates are obtained using a sandwich estimator which takes into account spatial autocorrelation in the errors. The approach is validated by a simulation study.
Collapse
Affiliation(s)
- Mats Kvarnström
- Department of Mathematical Statistics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | | |
Collapse
|
21
|
Baumgartl J, Arauz-Lara JL, Bechinger C. Like-charge attraction in confinement: myth or truth? SOFT MATTER 2006; 2:631-635. [PMID: 32680220 DOI: 10.1039/b603052a] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It is general wisdom that like-charged colloidal particles repel each other when suspended in liquids. This is in perfect agreement with mean field theories being developed more than 60 years ago. Accordingly, it was a big surprise when several groups independently reported long-ranged attractive components in the pair potential () of equally charged colloids. This so-called (LCA) was only observed in thin sample cells while the pair-interaction in unconfined suspensions has been experimentally confirmed to be entirely repulsive. Despite considerable experimental and theoretical efforts, LCA remains one of the most challenging mysteries in colloidal science. We experimentally reinvestigate the pair-potential () of charged colloidal particles with digital video microscopy and demonstrate that optical distortions in the particle's images lead to slightly erroneous particle positions. If not properly taken into account, this artefact pretends a minimum in () which was in the past misleadingly interpreted as LCA. After correcting optical distortions we obtain entirely repulsive pair interactions which show good agreement with linearized mean field theories.
Collapse
Affiliation(s)
- Jörg Baumgartl
- 2. Physikalisches Institut, Pfaffenwaldring 57, 70550, Stuttgart, Germany
| | - Jose Luis Arauz-Lara
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Alvaro Obregón 64, 78000, San Luis Potosí, Mexico
| | - Clemens Bechinger
- 2. Physikalisches Institut, Pfaffenwaldring 57, 70550, Stuttgart, Germany
| |
Collapse
|
22
|
Binks BP, Cui ZG, Fletcher PDI. Optical microscope absorbance imaging of carbon black nanoparticle films at solid and liquid surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:1664-70. [PMID: 16460089 DOI: 10.1021/la052816p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We have used an optical transmission microscope equipped with a digital camera and fitted with a narrow-band-pass filter to obtain absorbance images consisting of an array of pixel absorbance values. Absorbance images of films of carbon nanoparticles were used to derive spatially resolved images of the carbon film thicknesses with a resolution in the thickness dimension of a few nanometers. The technique was applied to the characterization of carbon nanoparticle films at cellulose-coated glass surfaces and at the oil-water interfaces of emulsion drops. For the emulsions, it was necessary to use oil and water phases of equal refractive index to avoid artifacts due to the drops acting as lenses.
Collapse
Affiliation(s)
- B P Binks
- Surfactant & Colloid Group, Department of Chemistry, University of Hull, Hull HU6 7RX, United Kingdom
| | | | | |
Collapse
|
23
|
Pu Y, Meng H. Intrinsic aberrations due to Mie scattering in particle holography. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2003; 20:1920-1932. [PMID: 14570105 DOI: 10.1364/josaa.20.001920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Holography of small particles is a newly revived topic because of its importance in holographic particle image velocimetry (HPIV). However, the property of particle images formed through holography remains largely unexplored. This fact undermines the measurement reliability of HPIV techniques and has become one of the obstacles in the full deployment of HPIV. We study the intrinsic aberrations in the holographic particle image introduced by particle light scattering and investigate how accurately holography can deliver information about the particles that are being imaged. Consistent with our experimental observations, simulations based on Mie scattering theory show that even with a perfect hologram the reconstructed particle images demonstrate complex three-dimensional morphologies and bodily shifts. These characteristics, manifested as image aberrations, result from uneven scattering amplitude and phase distributions across the finite aperture of the hologram. Such aberrations degrade the signal-to-noise ratio in the reconstructed image as well as introducing systematic errors in detected particle image positions. We examine the effect of these aberrations on HPIV measurements.
Collapse
Affiliation(s)
- Ye Pu
- Laser Flow Diagnostics Laboratory, Department of Mechanical and Aerospace Engineering, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | | |
Collapse
|
24
|
Pan G, Meng H. Digital holography of particle fields: reconstruction by use of complex amplitude. APPLIED OPTICS 2003; 42:827-833. [PMID: 12593486 DOI: 10.1364/ao.42.000827] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Digital holography appears to be a strong contender as the next-generation technology for holographic diagnostics of particle fields and holographic particle image velocimetry for flow field measurement. With the digital holographic approach, holograms are directly recorded by a digital camera and reconstructed numerically. This not only eliminates wet chemical processing and mechanical scanning, but also enables the use of complex amplitude information inaccessible by optical reconstruction, thereby allowing flexible reconstruction algorithms to achieve optimization of specific information. However, owing to the inherently low pixel resolution of solid-state imaging sensors, digital holography gives poor depth resolution for images, a problem that severely impairs the usefulness of digital holography especially in densely populated particle fields. This paper describes a technique that significantly improves particle axial-location accuracy by exploring the reconstructed complex amplitude information, compared with other numerical reconstruction schemes that merely mimic traditional optical reconstruction. This novel method allows accurate extraction of particle locations from forward-scattering particle holograms even at high particle loadings.
Collapse
Affiliation(s)
- Gang Pan
- Laser Flow Diagnostics Lab, Department of Mechanical and Aerospace Engineering, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | | |
Collapse
|
25
|
Boustany NN, Drezek R, Thakor NV. Calcium-induced alterations in mitochondrial morphology quantified in situ with optical scatter imaging. Biophys J 2002; 83:1691-700. [PMID: 12202392 PMCID: PMC1302265 DOI: 10.1016/s0006-3495(02)73937-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Optical scatter imaging (OSI), a technique we developed recently, was used to measure the ratio of wide-to-narrow angle scatter (OSIR) within endothelial cells subjected to calcium overload (1.6 mM) after permeabilization by ionomycin. Within a few minutes of calcium overload, the mitochondria, which started as elongated organelles, rounded up into spherically shaped particles. This change in morphology was accompanied by a statistically significant 14% increase in OSIR in the cells' cytoplasm. Mitochondrial rounding and OSIR increase were suppressed by cyclosporin A (25 microM), implying that the observed geometrical and scattering changes were directly attributable to the mitochondrial permeability transition. The angular scattering properties of a long mitochondrion rounding up were approximated by numerical simulations of light scatter from an ellipsoid rounding up into a sphere. The simulations predicted a relative increase in OSIR comparable to that measured experimentally for the case where the shape transition takes place with little or no volume increase. The simulations also suggested that mitochondrial refractive index changes could not account for the OSIR changes observed. Our data show that changes in OSIR correlate with mitochondrial morphology change in situ. OSI provides a new tool for subcellular imaging and complements other microscopy methods, such as fluorescence.
Collapse
Affiliation(s)
- Nada N Boustany
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
26
|
Thwar PK, Velegol D. Measuring Particle Diameter and Particle−Particle Gap with Nanometer Precision Using an Optical Microscope. Ind Eng Chem Res 2001. [DOI: 10.1021/ie000664h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Prasanna K. Thwar
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802-4400
| | - Darrell Velegol
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802-4400
| |
Collapse
|