1
|
de la Malla C, Goettker A. The effect of impaired velocity signals on goal-directed eye and hand movements. Sci Rep 2023; 13:13646. [PMID: 37607970 PMCID: PMC10444871 DOI: 10.1038/s41598-023-40394-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023] Open
Abstract
Information about position and velocity is essential to predict where moving targets will be in the future, and to accurately move towards them. But how are the two signals combined over time to complete goal-directed movements? We show that when velocity information is impaired due to using second-order motion stimuli, saccades directed towards moving targets land at positions where targets were ~ 100 ms before saccade initiation, but hand movements are accurate. Importantly, the longer latencies of hand movements allow for additional time to process the sensory information available. When increasing the period of time one sees the moving target before making the saccade, saccades become accurate. In line with that, hand movements with short latencies show higher curvature, indicating corrections based on an update of incoming sensory information. These results suggest that movements are controlled by an independent and evolving combination of sensory information about the target's position and velocity.
Collapse
Affiliation(s)
- Cristina de la Malla
- Vision and Control of Action Group, Department of Cognition, Development, and Psychology of Education, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain.
| | - Alexander Goettker
- Justus Liebig Universität Giessen, Giessen, Germany.
- Center for Mind, Brain and Behavior, University of Marburg and Justus Liebig University, Giessen, Germany.
| |
Collapse
|
2
|
Wu RJ, Clark AM, Cox MA, Intoy J, Jolly PC, Zhao Z, Rucci M. High-resolution eye-tracking via digital imaging of Purkinje reflections. J Vis 2023; 23:4. [PMID: 37140912 PMCID: PMC10166114 DOI: 10.1167/jov.23.5.4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Reliably measuring eye movements and determining where the observer looks are fundamental needs in vision science. A classical approach to achieve high-resolution oculomotor measurements is the so-called dual Purkinje image (DPI) method, a technique that relies on the relative motion of the reflections generated by two distinct surfaces in the eye, the cornea and the back of the lens. This technique has been traditionally implemented in fragile and difficult to operate analog devices, which have remained exclusive use of specialized oculomotor laboratories. Here we describe progress on the development of a digital DPI, a system that builds on recent advances in digital imaging to enable fast, highly precise eye-tracking without the complications of previous analog devices. This system integrates an optical setup with no moving components with a digital imaging module and dedicated software on a fast processing unit. Data from both artificial and human eyes demonstrate subarcminute resolution at 1 kHz. Furthermore, when coupled with previously developed gaze-contingent calibration methods, this system enables localization of the line of sight within a few arcminutes.
Collapse
Affiliation(s)
- Ruei-Jr Wu
- Department of Brain & Cognitive Sciences and Center for Visual Science, University of Rochester, 310 Meliora Hall, Rochester, NY, USA
| | - Ashley M Clark
- Department of Brain & Cognitive Sciences and Center for Visual Science, University of Rochester, 310 Meliora Hall, Rochester, NY, USA
| | - Michele A Cox
- Department of Brain & Cognitive Sciences and Center for Visual Science, University of Rochester, 310 Meliora Hall, Rochester, NY, USA
| | - Janis Intoy
- Department of Brain & Cognitive Sciences and Center for Visual Science, University of Rochester, 310 Meliora Hall, Rochester, NY, USA
| | - Paul C Jolly
- Department of Brain & Cognitive Sciences and Center for Visual Science, University of Rochester, 310 Meliora Hall, Rochester, NY, USA
| | - Zhetuo Zhao
- Department of Brain & Cognitive Sciences and Center for Visual Science, University of Rochester, 310 Meliora Hall, Rochester, NY, USA
| | - Michele Rucci
- Department of Brain & Cognitive Sciences and Center for Visual Science, University of Rochester, 310 Meliora Hall, Rochester, NY, USA
| |
Collapse
|
3
|
Miyamoto T, Numasawa K, Hirata Y, Katoh A, Miura K, Ono S. Effects of smooth pursuit and second-order stimuli on visual motion prediction. Physiol Rep 2021; 9:e14833. [PMID: 33991449 PMCID: PMC8123564 DOI: 10.14814/phy2.14833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 01/01/2023] Open
Abstract
The purpose of this study was to determine whether smooth pursuit eye movements affect visual motion prediction using a time‐to‐contact task where observers anticipate the exact instant that a partially occluded target would coincide with a stationary object. Moreover, we attempted to clarify the influence of second‐order motion on visual motion prediction during smooth pursuit. One target object moved to another stationary object (6 deg apart) at constant velocity of 3, 4, and 5 deg/s, and then the two objects disappeared 500 ms after the onset of target motion. The observers estimated the moment the moving object would overlap the stationary object and pressed a button. For the pursuit condition, both a Gaussian window and a random dots texture moved in the same direction at the same speed for the first‐order motion, whereas a Gaussian window moved over a static background composed of random dots texture for the second‐order motion. The results showed that the constant error of the time‐to‐contact shifted to a later response for the pursuit condition compared to the fixation condition, regardless of the object velocity. In addition, during smooth pursuit, the constant error for the second‐order motion shifted to an earlier response compared to the first‐order motion when the object velocity was 3 deg/s, whereas no significant difference was found at 4 and 5 deg/s. Therefore, our results suggest that visual motion prediction using a time‐to‐contact task is affected by both eye movements and motion configuration such as second‐order motion.
Collapse
Affiliation(s)
- Takeshi Miyamoto
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Kosuke Numasawa
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Yutaka Hirata
- Department of Robotic Science and Technology, Chubu University College of Engineering, Kasugai, Japan
| | - Akira Katoh
- Department of Physiology, Tokai University School of Medicine, Kanagawa, Japan
| | - Kenichiro Miura
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seiji Ono
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
4
|
Contribution of the slow motion mechanism to global motion revealed by an MAE technique. Sci Rep 2021; 11:3995. [PMID: 33597567 PMCID: PMC7889884 DOI: 10.1038/s41598-021-82900-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/21/2021] [Indexed: 11/08/2022] Open
Abstract
Two different motion mechanisms have been identified with motion aftereffect (MAE). (1) A slow motion mechanism, accessed by a static MAE, is sensitive to high-spatial and low-temporal frequency; (2) a fast motion mechanism, accessed by a flicker MAE, is sensitive to low-spatial and high-temporal frequency. We examined their respective responses to global motion after adapting to a global motion pattern constructed of multiple compound Gabor patches arranged circularly. Each compound Gabor patch contained two gratings at different spatial frequencies (0.53 and 2.13 cpd) drifting in opposite directions. The participants reported the direction and duration of the MAE for a variety of global motion patterns. We discovered that static MAE durations depended on the global motion patterns, e.g., longer MAE duration to patches arranged to see rotation than to random motion (Exp 1), and increase with global motion strength (patch number in Exp 2). In contrast, flicker MAEs durations are similar across different patterns and adaptation strength. Further, the global integration occurred at the adaptation stage, rather than at the test stage (Exp 3). These results suggest that slow motion mechanism, assessed by static MAE, integrate motion signals over space while fast motion mechanisms do not, at least under the conditions used.
Collapse
|
5
|
Miyamoto T, Miura K, Kizuka T, Ono S. Properties of smooth pursuit and visual motion reaction time to second-order motion stimuli. PLoS One 2020; 15:e0243430. [PMID: 33315877 PMCID: PMC7735583 DOI: 10.1371/journal.pone.0243430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022] Open
Abstract
A large number of psychophysical and neurophysiological studies have demonstrated that smooth pursuit eye movements are tightly related to visual motion perception. This could be due to the fact that visual motion sensitive cortical areas such as meddle temporal (MT), medial superior temporal (MST) areas are involved in motion perception as well as pursuit initiation. Although the directional-discrimination and perceived target velocity tasks are used to evaluate visual motion perception, it is still uncertain whether the speed of visual motion perception, which is determined by visuomotor reaction time (RT) to a small target, is related to pursuit initiation. Therefore, we attempted to determine the relationship between pursuit latency/acceleration and the visual motion RT which was measured to the visual motion stimuli that moved leftward or rightward. The participants were instructed to fixate on a stationary target and press one of the buttons corresponding to the direction of target motion as soon as possible once the target starts to move. We applied five different visual motion stimuli including first- and second-order motion for smooth pursuit and visual motion RT tasks. It is well known that second-order motion induces lower retinal image motion, which elicits weaker responses in MT and MST compared to first-order motion stimuli. Our results showed that pursuit initiation including latency and initial eye acceleration were suppressed by second-order motion. In addition, second-order motion caused a delay in visual motion RT. The better performances in both pursuit initiation and visual motion RT were observed for first-order motion, whereas second-order (theta motion) induced remarkable deficits in both variables. Furthermore, significant Pearson's correlation and within-subjects correlation coefficients were obtained between visual motion RT and pursuit latency/acceleration. Our findings support the suggestion that there is a common neuronal pathway involved in both pursuit initiation and the speed of visual motion perception.
Collapse
Affiliation(s)
- Takeshi Miyamoto
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Kenichiro Miura
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Integrative Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomohiro Kizuka
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Seiji Ono
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
- * E-mail:
| |
Collapse
|
6
|
Miyamoto T, Miura K, Kizuka T, Ono S. Properties of smooth pursuit adaptation induced by theta motion. Physiol Behav 2020; 229:113245. [PMID: 33188790 DOI: 10.1016/j.physbeh.2020.113245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 11/19/2022]
Abstract
Current study attempted to determine whether repeated smooth pursuit trials using theta motion, in which the directions of retinal image-motion and object-motion are opposed, yield pursuit adaptation. Adaptation trials consisted of 350 step-ramp trials using theta motion, and pre- and post-trials using first-order motion were conducted. As a result, initial acceleration in post-adaptation increased significantly than pre-adaptation trials. This was the case even though there was no adaptive change throughout adaptation (350 trials) using theta motion. Our results suggest that smooth pursuit could adapt to theta motion even with challenges associated with opposite retinal slip.
Collapse
Affiliation(s)
- Takeshi Miyamoto
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8574, Japan
| | - Kenichiro Miura
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Tomohiro Kizuka
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8574, Japan
| | - Seiji Ono
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8574, Japan.
| |
Collapse
|
7
|
Goettker A, Braun DI, Gegenfurtner KR. Dynamic combination of position and motion information when tracking moving targets. J Vis 2020; 19:2. [PMID: 31287856 DOI: 10.1167/19.7.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
To accurately foveate a moving target, the oculomotor system needs to estimate the position of the target at the saccade end, based on information about its position and ongoing movement, while accounting for neuronal delays and execution time of the saccade. We investigated human interceptive saccades and pursuit responses to moving targets defined by high and low luminance contrast or by chromatic contrast only (isoluminance). We used step-ramps with perpendicular directions between vertical target steps of 10 deg/s and horizontal ramps of 2.5 to 20 deg/s to separate errors with respect to the position step of the target in the vertical dimension, and errors related to target motion in the horizontal dimension. Interceptive saccades to targets of high and low luminance contrast landed close to the actual target positions, suggesting relatively accurate estimates of the amount of target displacement. Interceptive saccades to isoluminant targets were less accurate. They landed at positions the target had on average 100 ms before saccade onset. One account of this finding is that the integration of target motion is compromised for isoluminant targets moving in the periphery. In this case, the oculomotor system can use an accurate, but delayed position component, but cannot account for target movement. This deficit was also present for the postsaccadic pursuit speed. For the two luminance conditions, pursuit direction and speed were adjusted depending on the saccadic landing position. The rapid postsaccadic pursuit adjustments suggest shared position- and motion-related signals of target and eye for saccade and pursuit control.
Collapse
|
8
|
Ma Z, Watamaniuk SNJ, Heinen SJ. Illusory motion reveals velocity matching, not foveation, drives smooth pursuit of large objects. J Vis 2017; 17:20. [PMID: 29090315 PMCID: PMC5665499 DOI: 10.1167/17.12.20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
When small objects move in a scene, we keep them foveated with smooth pursuit eye movements. Although large objects such as people and animals are common, it is nonetheless unknown how we pursue them since they cannot be foveated. It might be that the brain calculates an object's centroid, and then centers the eyes on it during pursuit as a foveation mechanism might. Alternatively, the brain merely matches the velocity by motion integration. We test these alternatives with an illusory motion stimulus that translates at a speed different from its retinal motion. The stimulus was a Gabor array that translated at a fixed velocity, with component Gabors that drifted with motion consistent or inconsistent with the translation. Velocity matching predicts different pursuit behaviors across drift conditions, while centroid matching predicts no difference. We also tested whether pursuit can segregate and ignore irrelevant local drifts when motion and centroid information are consistent by surrounding the Gabors with solid frames. Finally, observers judged the global translational speed of the Gabors to determine whether smooth pursuit and motion perception share mechanisms. We found that consistent Gabor motion enhanced pursuit gain while inconsistent, opposite motion diminished it, drawing the eyes away from the center of the stimulus and supporting a motion-based pursuit drive. Catch-up saccades tended to counter the position offset, directing the eyes opposite to the deviation caused by the pursuit gain change. Surrounding the Gabors with visible frames canceled both the gain increase and the compensatory saccades. Perceived speed was modulated analogous to pursuit gain. The results suggest that smooth pursuit of large stimuli depends on the magnitude of integrated retinal motion information, not its retinal location, and that the position system might be unnecessary for generating smooth velocity to large pursuit targets.
Collapse
Affiliation(s)
- Zheng Ma
- Smith-Kettlewell Eye Research Institute, San Francisco, CA, USA
| | | | - Stephen J Heinen
- The Smith-Kettlewell Eye Research Institute, San Francisco, CA, USA
| |
Collapse
|
9
|
Zhu JE, Ma WJ. Orientation-dependent biases in length judgments of isolated stimuli. J Vis 2017; 17:20. [PMID: 28245499 DOI: 10.1167/17.2.20] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Vertical line segments tend to be perceived as longer than horizontal ones of the same length, but this may in part be due to configuration effects. To minimize such effects, we used isolated line segments in a two-interval, forced choice paradigm, not limiting ourselves to horizontal and vertical. We fitted psychometric curves using a Bayesian method that assumes that, for a given subject, the lapse rate is the same across all conditions. The closer a line segment's orientation was to vertical, the longer it was perceived to be. Moreover, subjects tended to report the standard line (in the second interval) as longer. The data were well described by a model that contains both an orientation-dependent and an interval-dependent multiplicative bias. Using this model, we estimated that a vertical line was on average perceived as 9.2% ± 2.1% longer than a horizontal line, and a second-interval line was on average perceived as 2.4% ± 0.9% longer than a first-interval line. Moving from a descriptive to an explanatory model, we hypothesized that anisotropy in the polar angle of lines in three dimensions underlies the horizontal-vertical illusion, specifically, that line segments more often have a polar angle of 90° (corresponding to the ground plane) than any other polar angle. This model qualitatively accounts not only for the empirical relationship between projected length and projected orientation that predicts the horizontal-vertical illusion, but also for the empirical distribution of projected orientation in photographs of natural scenes and for paradoxical results reported earlier for slanted surfaces.
Collapse
Affiliation(s)
- Jielei Emma Zhu
- Center for Neural Science and Department of Psychology, New York University, New York, NY,
| | - Wei Ji Ma
- Center for Neural Science and Department of Psychology, New York University, New York, NY,
| |
Collapse
|
10
|
Brown AM, Lindsey DT, Cammenga JG, Giannone PJ, Stenger MR. The contrast sensitivity of the newborn human infant. Invest Ophthalmol Vis Sci 2015; 56:625-32. [PMID: 25564453 DOI: 10.1167/iovs.14-14757] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To measure the binocular contrast sensitivity (CS) of newborn infants using a fixation-and-following card procedure. METHODS The CS of 119 healthy newborn infants was measured using stimuli printed on cards under the descending method of limits (93 infants) and randomized/masked designs (26 infants). One experienced and one novice adult observer tested the infants using vertical square-wave gratings (0.06 and 0.10 cyc/deg; 20/10,000 and 20/6000 nominal Snellen equivalent); the experienced observer also tested using horizontal gratings (0.10 cyc/deg) and using the Method of Constant Stimuli while being kept unaware of the stimulus values. RESULTS The CS of the newborn infant was 2.0 (contrast threshold = 0.497; 95% confidence interval: 0.475-0.524) for vertically oriented gratings and 1.74 (threshold = 0.575; 95% confidence interval: 0.523-0.633) for horizontally oriented gratings (P < 0.0006). The standard deviation of infant CS was comparable to that obtained by others on adults using the Pelli-Robson chart. The two observers showed similar practice effects. Randomization of stimulus order and masking of the adult observer had no effect on CS. CONCLUSIONS The CS of individual newborn human infants can be measured using a fixation-and-following card procedure.
Collapse
Affiliation(s)
- Angela M Brown
- College of Optometry, The Ohio State University, Columbus, Ohio, United States
| | - Delwin T Lindsey
- College of Optometry, The Ohio State University, Columbus, Ohio, United States Department of Psychology, The Ohio State University, Mansfield, Columbus, Ohio, United States
| | - Joanna G Cammenga
- College of Optometry, The Ohio State University, Columbus, Ohio, United States
| | - Peter J Giannone
- College of Medicine, The Ohio State University, Columbus, Ohio, United States Kentucky Children's Hospital, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Michael R Stenger
- College of Medicine, The Ohio State University, Columbus, Ohio, United States Nationwide Children's Hospital, Columbus, Ohio, United States
| |
Collapse
|
11
|
Kowler E. Eye movements: the past 25 years. Vision Res 2011; 51:1457-83. [PMID: 21237189 PMCID: PMC3094591 DOI: 10.1016/j.visres.2010.12.014] [Citation(s) in RCA: 289] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 11/29/2010] [Accepted: 12/27/2010] [Indexed: 11/30/2022]
Abstract
This article reviews the past 25 years of research on eye movements (1986-2011). Emphasis is on three oculomotor behaviors: gaze control, smooth pursuit and saccades, and on their interactions with vision. Focus over the past 25 years has remained on the fundamental and classical questions: What are the mechanisms that keep gaze stable with either stationary or moving targets? How does the motion of the image on the retina affect vision? Where do we look - and why - when performing a complex task? How can the world appear clear and stable despite continual movements of the eyes? The past 25 years of investigation of these questions has seen progress and transformations at all levels due to new approaches (behavioral, neural and theoretical) aimed at studying how eye movements cope with real-world visual and cognitive demands. The work has led to a better understanding of how prediction, learning and attention work with sensory signals to contribute to the effective operation of eye movements in visually rich environments.
Collapse
Affiliation(s)
- Eileen Kowler
- Department of Psychology, Rutgers University, Piscataway, NJ 08854, United States.
| |
Collapse
|
12
|
Schütz AC, Braun DI, Gegenfurtner KR. Chromatic Contrast Sensitivity During Optokinetic Nystagmus, Visually Enhanced Vestibulo-ocular Reflex, and Smooth Pursuit Eye Movements. J Neurophysiol 2009; 101:2317-27. [DOI: 10.1152/jn.91248.2008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recently we showed that sensitivity for chromatic- and high-spatial frequency luminance stimuli is enhanced during smooth-pursuit eye movements (SPEMs). Here we investigated whether this enhancement is a general property of slow eye movements. Besides SPEM there are two other classes of eye movements that operate in a similar range of eye velocities: the optokinetic nystagmus (OKN) is a reflexive pattern of alternating fast and slow eye movements elicited by wide-field visual motion and the vestibulo-ocular reflex (VOR) stabilizes the gaze during head movements. In a natural environment all three classes of eye movements act synergistically to allow clear central vision during self- and object motion. To test whether the same improvement of chromatic sensitivity occurs during all of these eye movements, we measured human detection performance of chromatic and luminance line stimuli during OKN and contrast sensitivity during VOR and SPEM at comparable velocities. For comparison, performance in the same tasks was tested during fixation. During the slow phase of OKN we found a similar enhancement of chromatic detection rate like that during SPEM, whereas no enhancement was observable during VOR. This result indicates similarities between slow-phase OKN and SPEM, which are distinct from VOR.
Collapse
|
13
|
Rasche C, Gegenfurtner KR. Precision of speed discrimination and smooth pursuit eye movements. Vision Res 2009; 49:514-23. [DOI: 10.1016/j.visres.2008.12.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 11/21/2008] [Accepted: 12/08/2008] [Indexed: 01/01/2023]
|
14
|
Second-order orientation cues to the axis of motion. Vision Res 2009; 49:407-15. [DOI: 10.1016/j.visres.2008.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 11/10/2008] [Accepted: 11/19/2008] [Indexed: 11/22/2022]
|
15
|
Braun DI, Mennie N, Rasche C, Schütz AC, Hawken MJ, Gegenfurtner KR. Smooth Pursuit Eye Movements to Isoluminant Targets. J Neurophysiol 2008; 100:1287-300. [DOI: 10.1152/jn.00747.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
At slow speeds, chromatic isoluminant stimuli are perceived to move much slower than comparable luminance stimuli. We investigated whether smooth pursuit eye movements to isoluminant stimuli show an analogous slowing. Beside pursuit speed and latency, we studied speed judgments to the same stimuli during fixation and pursuit. Stimuli were either large sine wave gratings or small Gaussians blobs moving horizontally at speeds between 1 and 11°/s. Targets were defined by luminance contrast or color. Confirming prior studies, we found that speed judgments of isoluminant stimuli during fixation showed a substantial slowing when compared with luminance stimuli. A similarly strong and significant effect of isoluminance was found for pursuit initiation: compared with luminance targets of matched contrasts, latencies of pursuit initiation were delayed by 50 ms at all speeds and eye accelerations were reduced for isoluminant targets. A small difference was found between steady-state eye velocities of luminance and isoluminant targets. For comparison, we measured latencies of saccades to luminance and isoluminant stimuli under similar conditions, but the effect of isoluminance was only found for pursuit. Parallel psychophysical experiments revealed that different from speed judgments of moving isoluminant stimuli made during fixation, judgments during pursuit are veridical for the same stimuli at all speeds. Therefore information about target speed seems to be available for pursuit eye movements and speed judgments during pursuit but is degraded for perceptual speed judgments during fixation and for pursuit initiation.
Collapse
|
16
|
Kato M, de Wit TC, Stasiewicz D, von Hofsten C. Sensitivity to second-order motion in 10-month-olds. Vision Res 2008; 48:1187-95. [DOI: 10.1016/j.visres.2007.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 10/04/2007] [Accepted: 10/09/2007] [Indexed: 10/22/2022]
|
17
|
Hayashi R, Miura K, Tabata H, Kawano K. Eye Movements in Response to Dichoptic Motion: Evidence for a Parallel-Hierarchical Structure of Visual Motion Processing in Primates. J Neurophysiol 2008; 99:2329-46. [DOI: 10.1152/jn.01316.2007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Brief movements of a large-field visual stimulus elicit short-latency tracking eye movements termed “ocular following responses” (OFRs). To address the question of whether OFRs can be elicited by purely binocular motion signals in the absence of monocular motion cues, we measured OFRs from monkeys using dichoptic motion stimuli, the monocular inputs of which were flickering gratings in spatiotemporal quadrature, and compared them with OFRs to standard motion stimuli including monocular motion cues. Dichoptic motion did elicit OFRs, although with longer latencies and smaller amplitudes. In contrast to these findings, we observed that other types of motion stimuli categorized as non-first-order motion, which is undetectable by detectors for standard luminance-defined (first-order) motion, did not elicit OFRs, although they did evoke the sensation of motion. These results indicate that OFRs can be driven solely by cortical visual motion processing after binocular integration, which is distinct from the process incorporating non-first-order motion for elaborated motion perception. To explore the nature of dichoptic motion processing in terms of interaction with monocular motion processing, we further recorded OFRs from both humans and monkeys using our novel motion stimuli, the monocular and dichoptic motion signals of which move in opposite directions with a variable motion intensity ratio. We found that monocular and dichoptic motion signals are processed in parallel to elicit OFRs, rather than suppressing each other in a winner-take-all fashion, and the results were consistent across the species.
Collapse
|
18
|
Wilmer JB, Nakayama K. Two distinct visual motion mechanisms for smooth pursuit: evidence from individual differences. Neuron 2007; 54:987-1000. [PMID: 17582337 PMCID: PMC2562445 DOI: 10.1016/j.neuron.2007.06.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 01/31/2007] [Accepted: 06/04/2007] [Indexed: 10/23/2022]
Abstract
Smooth-pursuit eye velocity to a moving target is more accurate after an initial catch-up saccade than before, an enhancement that is poorly understood. We present an individual-differences-based method for identifying mechanisms underlying a physiological response and use it to test whether visual motion signals driving pursuit differ pre- and postsaccade. Correlating moment-to-moment measurements of pursuit over time with two psychophysical measures of speed estimation during fixation, we find two independent associations across individuals. Presaccadic pursuit acceleration is predicted by the precision of low-level (motion-energy-based) speed estimation, and postsaccadic pursuit precision is predicted by the precision of high-level (position-tracking) speed estimation. These results provide evidence that a low-level motion signal influences presaccadic acceleration and an independent high-level motion signal influences postsaccadic precision, thus presenting a plausible mechanism for postsaccadic enhancement of pursuit.
Collapse
Affiliation(s)
- Jeremy B. Wilmer
- Jeremy B. Wilmer, PhD, 4926 Hazel Street, University of Pennsylvania, Philadelphia, PA 19143, , 617-721-8766
- Ken Nakayama, PhD, Department of Psychology - Harvard University, 33 Kirkland Street, Cambridge, MA 02138-2044,
| | - Ken Nakayama
- Ken Nakayama, PhD, Department of Psychology - Harvard University, 33 Kirkland Street, Cambridge, MA 02138-2044,
| |
Collapse
|
19
|
Chen KJ, Sheliga BM, Fitzgibbon EJ, Miles FA. Initial ocular following in humans depends critically on the fourier components of the motion stimulus. Ann N Y Acad Sci 2006; 1039:260-71. [PMID: 15826980 PMCID: PMC1383627 DOI: 10.1196/annals.1325.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Visual motion is sensed by low-level (energy-based) and high-level (feature-based) mechanisms. Our interest is in the motion detectors underlying the initial ocular following responses (OFR) that are elicited at ultrashort latencies by sudden motions of large images. OFR were elicited in humans by applying horizontal motion to vertical square-wave gratings lacking the fundamental. In the frequency domain, a pure square wave is composed of the odd harmonics--first, third, fifth, seventh, etc.--such that the third, fifth, seventh, etc., have amplitudes that are one-third, one-fifth, one-seventh, etc., that of the first, and the missing fundamental stimulus lacks the first harmonic. Motion consisted of successive quarter-wavelength steps, so the features and 4n+1 harmonics (where n = integer) shifted forward, whereas the 4n-1 harmonics--including the strongest Fourier component (the third harmonic)--shifted backward (spatial aliasing). Thus, the net Fourier energy and the non-Fourier features moved in opposite directions. Initial OFR, recorded with the search coil technique, had minimum latencies of 60 to 70 ms and were always in the direction of the third harmonic, for example, leftward steps resulted in rightward OFR. Thus, the earliest OFR were strongly dependent on the motion of the major Fourier component, consistent with mediation by oriented spatiotemporal visual filters as in the well-known energy model of motion detection. Introducing interstimulus intervals of 10 to 100 ms (during which the screen was uniform gray) reversed the initial direction of tracking, consistent with extensive neurophysiological and psychophysical data suggesting that the visual input to the motion detectors has a biphasic temporal impulse response.
Collapse
Affiliation(s)
- K J Chen
- Laboratory of Sensorimotor Research, National Institutes of Health, Building 49 Room 2A50, 49 Convent Drive, Bethesda, MD 20892-4435, USA
| | | | | | | |
Collapse
|
20
|
Sheliga BM, Chen KJ, Fitzgibbon EJ, Miles FA. Initial ocular following in humans: a response to first-order motion energy. Vision Res 2006; 45:3307-21. [PMID: 15894346 PMCID: PMC1414793 DOI: 10.1016/j.visres.2005.03.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 03/18/2005] [Accepted: 03/18/2005] [Indexed: 11/20/2022]
Abstract
Visual motion is sensed by low-level (energy-based) and high-level (feature-based) mechanisms. Ocular following responses (OFR) were elicited in humans by applying horizontal motion to vertical square-wave gratings lacking the fundamental ("missing fundamental stimulus"). Motion consisted of successive 1/4-wavelength steps, so the features and 4n+1 harmonics (where n=integer) shifted forwards, whereas the 4n-1 harmonics--including the strongest Fourier component (the 3rd harmonic)--shifted backwards (spatial aliasing). Initial OFR, recorded with the electromagnetic search coil technique, were always in the direction of the 3rd harmonic, e.g., leftward steps resulted in rightward OFR. Thus, the earliest OFR were strongly dependent on the motion of the major Fourier component, consistent with early spatio-temporal filtering prior to motion detection, as in the well-known energy model of motion analysis.
Collapse
Affiliation(s)
- B M Sheliga
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Building 49 Room 2A50, 49 Convent Drive, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
21
|
Masson GS. From 1D to 2D via 3D: dynamics of surface motion segmentation for ocular tracking in primates. ACTA ACUST UNITED AC 2005; 98:35-52. [PMID: 15477021 DOI: 10.1016/j.jphysparis.2004.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In primates, tracking eye movements help vision by stabilising onto the retinas the images of a moving object of interest. This sensorimotor transformation involves several stages of motion processing, from the local measurement of one-dimensional luminance changes up to the integration of first and higher-order local motion cues into a global two-dimensional motion immune to antagonistic motions arising from the surrounding. The dynamics of this surface motion segmentation is reflected into the various components of the tracking responses and its underlying neural mechanisms can be correlated with behaviour at both single-cell and population levels. I review a series of behavioural studies which demonstrate that the neural representation driving eye movements evolves over time from a fast vector average of the outputs of linear and non-linear spatio-temporal filtering to a progressive and slower accurate solution for global motion. Because of the sensitivity of earliest ocular following to binocular disparity, antagonistic visual motion from surfaces located at different depths are filtered out. Thus, global motion integration is restricted within the depth plane of the object to be tracked. Similar dynamics were found at the level of monkey extra-striate areas MT and MST and I suggest that several parallel pathways along the motion stream are involved albeit with different latencies to build-up this accurate surface motion representation. After 200-300 ms, most of the computational problems of early motion processing (aperture problem, motion integration, motion segmentation) are solved and the eye velocity matches the global object velocity to maintain a clear and steady retinal image.
Collapse
Affiliation(s)
- Guillaume S Masson
- Institut de Neurosciences Physiologiques et Cognitives, Centre National de la Recherche Scientifique, 31 Chemin Jospeh Aiguier, 13402 Marseille cedex 20, France.
| |
Collapse
|
22
|
Born RT, Pack CC, Zhao R. Integration of motion cues for the initiation of smooth pursuit eye movements. PROGRESS IN BRAIN RESEARCH 2003; 140:225-37. [PMID: 12508593 DOI: 10.1016/s0079-6123(02)40053-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
To clearly see a moving object, an observer must rotate his or her eyes with a velocity that matches that of the object. Such rotations are called smooth pursuit eye movements, and they depend critically on the ability of the primate brain to integrate information about object velocity from various local motion signals. When the local motion signals are in conflict, it is possible to use smooth pursuit eye movements as a continuous read-out of the motion integration process. This review discusses the results of recent behavioral experiments that have taken this approach, along with relevant neurophysiological and computational studies.
Collapse
Affiliation(s)
- Richard T Born
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115-5701, USA.
| | | | | |
Collapse
|