1
|
Rozhkova G, Belokopytov A, Gracheva M, Ershov E, Nikolaev P. A simple method for comparing peripheral and central color vision by means of two smartphones. Behav Res Methods 2023; 55:38-57. [PMID: 35260965 DOI: 10.3758/s13428-021-01783-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2021] [Indexed: 11/08/2022]
Abstract
Information on peripheral color perception is far from sufficient, since it has predominantly been obtained using small stimuli, limited ranges of eccentricities, and sophisticated experimental conditions. Our goal was to consider the possibility of facilitating technical realization of the classical method of asymmetric color matching (ACM) developed by Moreland and Cruz (1959) for assessing appearance of color stimuli in the peripheral visual field (VF). We adopted the ACM method by employing two smartphones to implement matching procedure at various eccentricities. Although smartphones were successfully employed in vision studies, we are aware that some photometric parameters of smartphone displays are not sufficiently precise to ensure accurate color matching in foveal vision; moreover, certain technical characteristics of commercially available devices are variable. In the present study we provided evidence that, despite these shortages, smartphones can be applied for general and wide investigations of the peripheral vision. In our experiments, the smartphones were mounted on a mechanical perimeter to simultaneously present colored stimuli foveally and peripherally. Trying to reduce essential discomfort and fatigue experienced by most observers in peripheral vision studies, we did not apply bite bars, pupil dilatation, and Maxwellian view. The ACM measurements were performed without prior training of observers and in a wide range of eccentricities, varying between 0 and 95°. The results were presented in the HSV (hue, saturation, value) color space coordinates as a function of eccentricity and stimulus luminance. We demonstrated that our easy-to-conduct method provided a convenient means to investigate color appearance in the peripheral vision and to assess inter-individual differences.
Collapse
Affiliation(s)
- Galina Rozhkova
- Institute for Information Transmission Problems, RAS, Bolshoy Karetny 19, 127051, Moscow, Russia.
| | - Alexander Belokopytov
- Institute for Information Transmission Problems, RAS, Bolshoy Karetny 19, 127051, Moscow, Russia
| | - Maria Gracheva
- Institute for Information Transmission Problems, RAS, Bolshoy Karetny 19, 127051, Moscow, Russia
| | - Egor Ershov
- Institute for Information Transmission Problems, RAS, Bolshoy Karetny 19, 127051, Moscow, Russia
| | - Petr Nikolaev
- Institute for Information Transmission Problems, RAS, Bolshoy Karetny 19, 127051, Moscow, Russia
| |
Collapse
|
2
|
Pfeiffer RL, Anderson JR, Dahal J, Garcia JC, Yang JH, Sigulinsky CL, Rapp K, Emrich DP, Watt CB, Johnstun HA, Houser AR, Marc RE, Jones BW. A pathoconnectome of early neurodegeneration: Network changes in retinal degeneration. Exp Eye Res 2020; 199:108196. [PMID: 32810483 DOI: 10.1016/j.exer.2020.108196] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/27/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
Connectomics has demonstrated that synaptic networks and their topologies are precise and directly correlate with physiology and behavior. The next extension of connectomics is pathoconnectomics: to map neural network synaptology and circuit topologies corrupted by neurological disease in order to identify robust targets for therapeutics. In this report, we characterize a pathoconnectome of early retinal degeneration. This pathoconnectome was generated using serial section transmission electron microscopy to achieve an ultrastructural connectome with 2.18nm/px resolution for accurate identification of all chemical and gap junctional synapses. We observe aberrant connectivity in the rod-network pathway and novel synaptic connections deriving from neurite sprouting. These observations reveal principles of neuron responses to the loss of network components and can be extended to other neurodegenerative diseases.
Collapse
Affiliation(s)
- Rebecca L Pfeiffer
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA.
| | - James R Anderson
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Jeebika Dahal
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Jessica C Garcia
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Jia-Hui Yang
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | | | - Kevin Rapp
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Daniel P Emrich
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Carl B Watt
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Hope Ab Johnstun
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Alexis R Houser
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Robert E Marc
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA; Signature Immunologics, Torrey, UT, USA
| | - Bryan W Jones
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
3
|
Lauritzen JS, Sigulinsky CL, Anderson JR, Kalloniatis M, Nelson NT, Emrich DP, Rapp C, McCarthy N, Kerzner E, Meyer M, Jones BW, Marc RE. Rod-cone crossover connectome of mammalian bipolar cells. J Comp Neurol 2016; 527:87-116. [PMID: 27447117 PMCID: PMC5823792 DOI: 10.1002/cne.24084] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 06/08/2016] [Accepted: 06/30/2016] [Indexed: 11/11/2022]
Abstract
The basis of cross-suppression between rod and cone channels has long been an enigma. Using rabbit retinal connectome RC1, we show that all cone bipolar cell (BC) classes inhibit rod BCs via amacrine cell (AC) motifs (C1-6); that all cone BC classes are themselves inhibited by AC motifs (R1-5, R25) driven by rod BCs. A sparse symmetric AC motif (CR) is presynaptic and postsynaptic to both rod and cone BCs. ON cone BCs of all classes drive inhibition of rod BCs via motif C1 wide-field GABAergic ACs (γACs) and motif C2 narrow field glycinergic ON ACs (GACs). Each rod BC receives ≈10 crossover AC synapses and each ON cone BC can target ≈10 or more rod BCs via separate AC processes. OFF cone BCs mediate monosynaptic inhibition of rod BCs via motif C3 driven by OFF γACs and GACs and disynaptic inhibition via motifs C4 and C5 driven by OFF wide-field γACs and narrow-field GACs, respectively. Motifs C4 and C5 form halos of 60-100 inhibitory synapses on proximal dendrites of AI γACs. Rod BCs inhibit surrounding arrays of cone BCs through AII GAC networks that access ON and OFF cone BC patches via motifs R1, R2, R4, R5 and a unique ON AC motif R3 that collects rod BC inputs and targets ON cone BCs. Crossover synapses for motifs C1, C4, C5, and R3 are 3-4× larger than typical feedback synapses, which may be a signature for synaptic winner-take-all switches. J. Comp. Neurol. 527:87-116, 2019. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Crystal L Sigulinsky
- Department of Ophthalmology, John A. Moran Vision Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - James R Anderson
- Department of Ophthalmology, John A. Moran Vision Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Michael Kalloniatis
- Department of Optometry and Vision Science and Centre for Eye Health, University of New South Wales, Sydney, Australia
| | - Noah T Nelson
- Department of Ophthalmology, John A. Moran Vision Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Daniel P Emrich
- Department of Ophthalmology, John A. Moran Vision Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Christopher Rapp
- Department of Ophthalmology, John A. Moran Vision Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Nicholas McCarthy
- Department of Ophthalmology, John A. Moran Vision Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Ethan Kerzner
- Scientific Computing and Imaging Institute, University of Utah School of Computing, Salt Lake City Utah, USA
| | - Miriah Meyer
- Scientific Computing and Imaging Institute, University of Utah School of Computing, Salt Lake City Utah, USA
| | - Bryan W Jones
- Department of Ophthalmology, John A. Moran Vision Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Robert E Marc
- Department of Ophthalmology, John A. Moran Vision Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
4
|
Gunther KL. Non-cardinal color perception across the retina: easy for orange, hard for burgundy and sky blue. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2014; 31:A274-A282. [PMID: 24695183 DOI: 10.1364/josaa.31.00a274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cardinal color performance (reddish, greenish, bluish, yellowish, black, and white) has been shown to decline in peripheral viewing. What about non-cardinal color performance (e.g., orange, burgundy, and sky blue)? In visual search, performance on non-cardinal colors matched that of the cardinal colors in the (L-M)/(S-(L+M)) (isoluminant) color plane (Experiment 1, n=10, to 30°; Experiment 2, n=3, to 50°). However, performance in the (L-M)/(L+M) and (S-(L+M))/(L+M) color planes was worse for non-cardinal colors, at all eccentricities, even in the fovea. The implications that these results have for the existence of non-cardinal mechanisms in each color plane are discussed.
Collapse
|
5
|
Marc RE, Jones BW, Watt CB, Anderson JR, Sigulinsky C, Lauritzen S. Retinal connectomics: towards complete, accurate networks. Prog Retin Eye Res 2013; 37:141-62. [PMID: 24016532 PMCID: PMC4045117 DOI: 10.1016/j.preteyeres.2013.08.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 08/22/2013] [Accepted: 08/28/2013] [Indexed: 11/17/2022]
Abstract
Connectomics is a strategy for mapping complex neural networks based on high-speed automated electron optical imaging, computational assembly of neural data volumes, web-based navigational tools to explore 10(12)-10(15) byte (terabyte to petabyte) image volumes, and annotation and markup tools to convert images into rich networks with cellular metadata. These collections of network data and associated metadata, analyzed using tools from graph theory and classification theory, can be merged with classical systems theory, giving a more completely parameterized view of how biologic information processing systems are implemented in retina and brain. Networks have two separable features: topology and connection attributes. The first findings from connectomics strongly validate the idea that the topologies of complete retinal networks are far more complex than the simple schematics that emerged from classical anatomy. In particular, connectomics has permitted an aggressive refactoring of the retinal inner plexiform layer, demonstrating that network function cannot be simply inferred from stratification; exposing the complex geometric rules for inserting different cells into a shared network; revealing unexpected bidirectional signaling pathways between mammalian rod and cone systems; documenting selective feedforward systems, novel candidate signaling architectures, new coupling motifs, and the highly complex architecture of the mammalian AII amacrine cell. This is but the beginning, as the underlying principles of connectomics are readily transferrable to non-neural cell complexes and provide new contexts for assessing intercellular communication.
Collapse
Affiliation(s)
- Robert E. Marc
- University of Utah School of Medicine, Department of Ophthalmology / John A. Moran Eye Center, 65 Mario Capecchi Dr, Salt Lake City UT 84132
| | - Bryan W. Jones
- University of Utah School of Medicine, Department of Ophthalmology / John A. Moran Eye Center, 65 Mario Capecchi Dr, Salt Lake City UT 84132
| | - Carl B. Watt
- University of Utah School of Medicine, Department of Ophthalmology / John A. Moran Eye Center, 65 Mario Capecchi Dr, Salt Lake City UT 84132
| | - James R. Anderson
- University of Utah School of Medicine, Department of Ophthalmology / John A. Moran Eye Center, 65 Mario Capecchi Dr, Salt Lake City UT 84132
| | - Crystal Sigulinsky
- University of Utah School of Medicine, Department of Ophthalmology / John A. Moran Eye Center, 65 Mario Capecchi Dr, Salt Lake City UT 84132
| | - Scott Lauritzen
- University of Utah School of Medicine, Department of Ophthalmology / John A. Moran Eye Center, 65 Mario Capecchi Dr, Salt Lake City UT 84132
| |
Collapse
|
6
|
Dalhaus RN, Gunther KL. A tritan Waldo would be easier to detect in the periphery than a red/green one: evidence from visual search. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2012; 29:A298-A305. [PMID: 22330393 DOI: 10.1364/josaa.29.00a298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In a color naming task from 0° to 55° eccentricity, we found that red/green performance (n=10 subjects) declines around 40° eccentricity, 5° earlier than does tritan performance (main effect of color, p=0.009; eccentricity, p<0.001; interaction, p=0.005). In a feature visual search task (e.g., red target dot among green distractor dots; twelve 2.5° diameter dots; 0, 20, and 45° eccentricity; 12 subjects), performance was significantly more impaired for red/green than for tritan stimuli, especially in the periphery (main effect of color, p=0.007; eccentricity, p<0.001; interaction, p=0.003). This effect occurred even following a rod bleach. Our results are consistent with influences from both the retina (especially random rather than selective peripheral cone input to midget ganglion cells for red/green perception, and selective cone input to small bistratified cells for tritan perception) and the cortex (differential cortical magnification across the two chromatic axes).
Collapse
Affiliation(s)
- Rob N Dalhaus
- Department of Psychology, Wabash College, 301 West Wabash Avenue, Crawfordsville, Indiana 47933, USA
| | | |
Collapse
|
7
|
McKeefry DJ, Murray IJ, Parry NRA. Perceived shifts in saturation and hue of chromatic stimuli in the near peripheral retina. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2007; 24:3168-79. [PMID: 17912307 DOI: 10.1364/josaa.24.003168] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Using an asymmetric color matching technique, we measured the perceived changes that occur in the saturation and hue of colored stimuli at different eccentricities within the central 25 degrees of the human retina in nine color-normal subjects. A cone-opponent-based vector model was used to compute the activity of the L-M and S-(L+M) channels. The results show that a large proportion of the shifts in saturation and hue that occur with increasing retinal eccentricity are mirrored by decreased activity of the L-M channel. In comparison, the contribution of the S cone-opponent system undergoes relatively little change within the central 20 degrees . In addition, we also found that changes in saturation and hue are different from each other in terms of their variation across color space and their variation with stimulus size. Our findings suggest that perceived shifts in saturation and hue are mediated largely via the reduction in activation of the L-M cone-opponent channel but that saturation and hue might be subject to different retinal and/or cortical influences that contribute to their differing size dependencies in the peripheral retina.
Collapse
Affiliation(s)
- Declan J McKeefry
- Vision Science Research Group, School of Life Sciences, University of Bradford, UK.
| | | | | |
Collapse
|
8
|
|
9
|
Mainster MA. Violet and blue light blocking intraocular lenses: photoprotection versus photoreception. Br J Ophthalmol 2006; 90:784-92. [PMID: 16714268 PMCID: PMC1860240 DOI: 10.1136/bjo.2005.086553] [Citation(s) in RCA: 380] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2006] [Indexed: 11/04/2022]
Abstract
AIM To analyse how intraocular lens (IOL) chromophores affect retinal photoprotection and the sensitivity of scotopic vision, melanopsin photoreception, and melatonin suppression. METHODS Transmittance spectra of IOLs, high pass spectral filters, human crystalline lenses, and sunglasses are used with spectral data for acute ultraviolet (UV)-blue photic retinopathy ("blue light hazard" phototoxicity), aphakic scotopic luminous efficiency, melanopsin sensitivity, and melatonin suppression to compute the effect of spectral filters on retinal photoprotection, scotopic sensitivity, and circadian photoentrainment. RESULTS Retinal photoprotection increases and photoreception decreases as high pass filters progressively attenuate additional short wavelength light. Violet blocking IOLs reduce retinal exposure to UV (200-400 nm) radiation and violet (400-440 nm) light. Blue blocking IOLs attenuate blue (440-500 nm) and shorter wavelength optical radiation. Blue blocking IOLs theoretically provide better photoprotection but worse photoreception than conventional UV only blocking IOLs. Violet blocking IOLs offer similar UV-blue photoprotection but better scotopic and melanopsin photoreception than blue blocking IOLs. Sunglasses provide roughly 50% more UV-blue photoprotection than either violet or blue blocking IOLs. CONCLUSIONS Action spectra for most retinal photosensitisers increase or peak in the violet part of the spectrum. Melanopsin, melatonin suppression, and rhodopsin sensitivities are all maximal in the blue part of the spectrum. Scotopic sensitivity and circadian photoentrainment decline with ageing. UV blocking IOLs provide older adults with the best possible rhodopsin and melanopsin sensitivity. Blue and violet blocking IOLs provide less photoprotection than middle aged crystalline lenses, which do not prevent age related macular degeneration (AMD). Thus, pseudophakes should wear sunglasses in bright environments if the unproved phototoxicity-AMD hypothesis is valid.
Collapse
Affiliation(s)
- M A Mainster
- PhD, MD, FRCOphth, Department of Ophthalmology, MS3009, University of Kansas Medical School, 3901 Rainbow Boulevard, Kansas City, KS 66160-7379, USA.
| |
Collapse
|
10
|
Abstract
Color vision starts with the absorption of light in the retinal cone photoreceptors, which transduce electromagnetic energy into electrical voltages. These voltages are transformed into action potentials by a complicated network of cells in the retina. The information is sent to the visual cortex via the lateral geniculate nucleus (LGN) in three separate color-opponent channels that have been characterized psychophysically, physiologically, and computationally. The properties of cells in the retina and LGN account for a surprisingly large body of psychophysical literature. This suggests that several fundamental computations involved in color perception occur at early levels of processing. In the cortex, information from the three retino-geniculate channels is combined to enable perception of a large variety of different hues. Furthermore, recent evidence suggests that color analysis and coding cannot be separated from the analysis and coding of other visual attributes such as form and motion. Though there are some brain areas that are more sensitive to color than others, color vision emerges through the combined activity of neurons in many different areas.
Collapse
Affiliation(s)
- Karl R Gegenfurtner
- Department of Psychology, Giessen University, Otto-Behaghel-Strasse 10, 35394 Giessen, Germany.
| | | |
Collapse
|
11
|
Abstract
Specific-hue threshold as a function of absolute rod threshold was measured with long-, middle-, and short-wavelength monochromatic test lights presented 17 deg extrafoveally. The measurements were obtained both during the rod phase of long-term dark adaptation and under conditions where the rod receptor system was gradually light adapted from a dark-adapted state by a scotopic background field of increasing retinal illumination. The results show that change in specific-hue threshold with change in absolute rod threshold is not, in general, identical for light and dark adaptation of the rod receptor system. Thus, in the long- and middle-wavelength test regions, the specific-hue threshold could be obtained at higher intensities under the light- as compared to the dark-adaptation condition when absolute rod thresholds were the same. Just the opposite was found for the short-wavelength tests. It is concluded that change in specific-hue threshold with light and dark adaptation of the rod receptor system is not, in general, controlled by the same mechanism.
Collapse
Affiliation(s)
- Ulf Stabell
- Department of Psychology, University of Oslo, Box 1094, Blindern, N-0317 Oslo, Norway.
| | | |
Collapse
|