1
|
Soomro SR, Sager S, Paniagua-Diaz AM, Prieto PM, Artal P. Head-mounted adaptive optics visual simulator. BIOMEDICAL OPTICS EXPRESS 2024; 15:608-623. [PMID: 38404335 PMCID: PMC10890873 DOI: 10.1364/boe.506858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 02/27/2024]
Abstract
Adaptive optics visual simulation is a powerful tool for vision testing and evaluation. However, the existing instruments either have fixed tabletop configurations or, being wearable, only offer the correction of defocus. This paper proposes a novel head-mounted adaptive optics visual simulator that can measure and modify complex ocular aberrations in real-time. The prototype is composed of two optical modules, one for the objective assessment of aberrations and the second for wavefront modulation, all of which are integrated into a wearable headset. The device incorporates a microdisplay for stimulus generation, a liquid crystal on silicon (LCoS) spatial light modulator for wavefront manipulation, and a Hartmann-Shack wavefront sensor. Miniature optical components and optical path folding structures, together with in-house 3D printed mounts and housing, were adapted to realize the compact size. The system was calibrated by characterizing and compensating the internal aberrations of the visual relay. The performance of the prototype was analyzed by evaluating the measurement and compensation of low-order and higher-order aberrations induced through trial lenses and phase masks in an artificial eye. The defocus curves for a simulated bifocal diffractive lens were evaluated in real eyes. The results show high accuracy while measuring and compensating for the induced defocus, astigmatism, and higher-order aberrations, whereas the MTF analysis shows post-correction resolution of up to 37.5 cycles/degree (VA 1.25). Moreover, the subjective test results show the defocus curves closely matched to a commercial desktop visual simulator.
Collapse
Affiliation(s)
- Shoaib R. Soomro
- Voptica S.L., Campus de Espinardo (Edificio Pleiades), 30100 Murcia, Spain
- Electronic Engineering Department, Mehran University of Engineering and Technology, Pakistan
| | - Santiago Sager
- Voptica S.L., Campus de Espinardo (Edificio Pleiades), 30100 Murcia, Spain
- Laboratorio de Óptica, Universidad de Murcia, Campus de Espinardo (Edificio 34), 30100 Murcia, Spain
| | - Alba M. Paniagua-Diaz
- Laboratorio de Óptica, Universidad de Murcia, Campus de Espinardo (Edificio 34), 30100 Murcia, Spain
| | - Pedro M. Prieto
- Laboratorio de Óptica, Universidad de Murcia, Campus de Espinardo (Edificio 34), 30100 Murcia, Spain
| | - Pablo Artal
- Laboratorio de Óptica, Universidad de Murcia, Campus de Espinardo (Edificio 34), 30100 Murcia, Spain
| |
Collapse
|
2
|
Santiago-Alvarado A, Granados-Agustín FS, López-Raymundo BR, Hernández-Mendez A, Huerta-Carranza O. Development of a bio-inspired optical system that mimics accommodation and lighting regulation like the human eye. APPLIED OPTICS 2024; 63:193-203. [PMID: 38175021 DOI: 10.1364/ao.506986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/02/2023] [Indexed: 01/05/2024]
Abstract
Bio-inspired optical systems have recently been developed using polarizers and liquid or rigid lenses. In this work, we propose a bio-inspired opto-mechatronic system that imitates the accommodation and regulation of light intensity as the human eye does. The system uses a polymeric lens as a cornea, an adjustable diaphragm as an iris, a tunable solid elastic lens as a crystalline lens, and a commercial sensor as a retina. We also present the development of the electronic control system to accommodate and regulate the amount of light that enters the system, for which two stepper motors, an Arduino control system, and light and movement sensors are used. The characterization of the system is presented together with the results obtained, where it can be seen that the system works in an acceptable range as the human eye does.
Collapse
|
3
|
Marcos S, Artal P, Atchison DA, Hampson K, Legras R, Lundström L, Yoon G. Adaptive optics visual simulators: a review of recent optical designs and applications [Invited]. BIOMEDICAL OPTICS EXPRESS 2022; 13:6508-6532. [PMID: 36589577 PMCID: PMC9774875 DOI: 10.1364/boe.473458] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 05/02/2023]
Abstract
In their pioneering work demonstrating measurement and full correction of the eye's optical aberrations, Liang, Williams and Miller, [JOSA A14, 2884 (1997)10.1364/JOSAA.14.002884] showed improvement in visual performance using adaptive optics (AO). Since then, AO visual simulators have been developed to explore the spatial limits to human vision and as platforms to test non-invasively optical corrections for presbyopia, myopia, or corneal irregularities. These applications have allowed new psychophysics bypassing the optics of the eye, ranging from studying the impact of the interactions of monochromatic and chromatic aberrations on vision to neural adaptation. Other applications address new paradigms of lens designs and corrections of ocular errors. The current paper describes a series of AO visual simulators developed in laboratories around the world, key applications, and current trends and challenges. As the field moves into its second quarter century, new available technologies and a solid reception by the clinical community promise a vigorous and expanding use of AO simulation in years to come.
Collapse
Affiliation(s)
- Susana Marcos
- Center for Visual Sciences; The Institute of Optics and Flaum Eye Institute, University of Rochester, New York 14642, USA
| | - Pablo Artal
- Laboratorio de Optica, Universidad de Murcia, Campus Universitario de Espinardo, 30100, Spain
| | - David A. Atchison
- Centre for Vision and Eye Research, Queensland University of Technology, Brisbane Q, 4059, Australia
| | - Karen Hampson
- Department of Optometry, University of Manchester, Manchester M13 9PL, UK
| | - Richard Legras
- LuMIn, CNRS, ENS Paris-Saclay, Université Paris-Saclay, CentraleSupelec, Université Paris-Saclay Orsay, 91400, France
| | - Linda Lundström
- KTH (Royal Institute of Technology), Stockholm, 10691, Sweden
| | - Geunyoung Yoon
- College of Optometry, University of Houston, Houston, 77004, USA
| |
Collapse
|
4
|
Impact on binocular visual function of small-incision lenticule extraction for high myopia. J Cataract Refract Surg 2021; 47:430-438. [PMID: 33181628 DOI: 10.1097/j.jcrs.0000000000000480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/28/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE To assess whether small-incision lenticule extraction (SMILE) for high myopia reduces the binocular visual function assessed by stereoacuity, binocular visual acuity, binocular contrast sensitivity, and binocular summation. SETTING University hospital. DESIGN Prospective case series. METHODS Patients with a myopic spherical equivalent of at least 6.00 diopters (D) scheduled for SMILE aimed at emmetropia were included. Psychophysical testing was performed with correction preoperatively but no correction postoperatively. Stereoacuity was assessed with the Randot Circles test and the near Frisby test, visual acuity (monocular and binocular) was assessed with high-contrast Early Treatment Diabetic Retinopathy Study charts, and contrast sensitivity (monocular and binocular) was assessed with the Pelli-Robson chart and the Freiburg Acuity and Contrast Test. Binocular summation was calculated by comparing the binocular score against the best monocular score. RESULTS A total of 138 eyes of 69 patients were included. The mean spherical equivalent changed from -7.46 D ± 1.06 (SD) to -0.23 D ± 0.40 postoperatively. Stereoacuity did not change significantly postoperatively; median change (interquartile range) was -0.32 (-6.21 to 1.55) seconds of arc with the Frisby test and 0.00 (-7.5 to 5.0) seconds of arc with the Randot test (P ≥ .06). Binocular postoperative uncorrected distance visual acuity was not different from the preoperative corrected distance visual acuity (P = .40). Contrast sensitivity declined slightly monocularly with both tests of contrast sensitivity but was unaltered binocularly (P ≥ .08). Binocular summation for visual acuity and contrast sensitivity was unaltered following surgery (P ≥ .09). CONCLUSIONS SMILE for high myopia did not reduce the binocular function assessed by stereoacuity, binocular visual acuity, binocular contrast sensitivity, and binocular summation.
Collapse
|
5
|
Ng CJ, Blake R, Banks MS, Tadin D, Yoon G. Optics and neural adaptation jointly limit human stereovision. Proc Natl Acad Sci U S A 2021; 118:e2100126118. [PMID: 34074775 PMCID: PMC8201763 DOI: 10.1073/pnas.2100126118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stereovision is the ability to perceive fine depth variations from small differences in the two eyes' images. Using adaptive optics, we show that even minute optical aberrations that are not clinically correctable, and go unnoticed in everyday vision, can affect stereo acuity. Hence, the human binocular system is capable of using fine details that are not experienced in everyday vision. Interestingly, stereo acuity varied considerably across individuals even when they were provided identical perfect optics. We also found that individuals' stereo acuity is better when viewing with their habitual optics rather than someone else's (better) optics. Together, these findings suggest that the visual system compensates for habitual optical aberrations through neural adaptation and thereby optimizes stereovision uniquely for each individual. Thus, stereovision is limited by small optical aberrations and by neural adaptation to one's own optics.
Collapse
Affiliation(s)
- Cherlyn J Ng
- Flaum Eye Institute, University of Rochester, Rochester, NY 14642
- Center for Visual Science, University of Rochester, Rochester, NY 14627
| | - Randolph Blake
- Department of Psychology, Vanderbilt University, Nashville, TN 37203
| | - Martin S Banks
- School of Optometry, University of California, Berkeley, CA 94720;
| | - Duje Tadin
- Flaum Eye Institute, University of Rochester, Rochester, NY 14642
- Center for Visual Science, University of Rochester, Rochester, NY 14627
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627
| | - Geunyoung Yoon
- Flaum Eye Institute, University of Rochester, Rochester, NY 14642;
- Center for Visual Science, University of Rochester, Rochester, NY 14627
| |
Collapse
|
6
|
Radhakrishnan A, Pascual D, Marcos S, Dorronsoro C. Vision with different presbyopia corrections simulated with a portable binocular visual simulator. PLoS One 2019; 14:e0221144. [PMID: 31430328 PMCID: PMC6701771 DOI: 10.1371/journal.pone.0221144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/31/2019] [Indexed: 11/18/2022] Open
Abstract
Presbyopes can choose today among different corrections to provide them with functional vision at far and near, and the outcomes and patient satisfaction depend on the selection. In this study, we present a binocular and portable vision simulator, based on temporal multiplexing of two synchronized tunable lenses allowing see-through and programmable visual simulations of presbyopic corrections. Seventeen binocular corrections were tested: 3 Monofocal (Far, Intermediate, Near), 4 Simultaneous Vision (bifocal, trifocal), 2 Monovision (far and near in either eye) and 8 Modified Monovision corrections (Simultaneous vision in one eye, Monofocal in the other eye). Perceived visual quality was assessed through the simulated corrections in 8 cyclopleged subjects who viewed a composite realistic visual scene with high contrast letters and a landscape at far (4 m) and a high contrast text at intermediate (66 cm) and near (33 cm) distances. Perceptual scores were obtained on a scale of 0 to 5 (low to high perceived quality). Perceptual preference was assessed by judging 36 random image pairs (6 repetitions) viewed through 9 binocular presbyopic corrections using two-interval forced choice procedures. The average score, across far and near distances, was the highest for Monovision (4.4±0.3), followed by Modified Monovision (3.4±0.1), Simultaneous Vision (3.0±0.1) and Monofocal corrections (2.9±0.2). However, the mean difference between far and near was lower for Simultaneous Vision and Monovision (0.4±0.1 PS) than Modified Monovision (1.8±0.7) or monofocal corrections (3.3±1.5). A strong significant correlation was found between the perceptual scores and the percentages of energy in focus, for each correction and distance (R = 0.64, p<0.0001). Multivariate ANOVA revealed significant influence of observation distances (p<10-9) and patients (p = 0.01) on Perceptual Score. In conclusion, we have developed a binocular portable vision simulator that can simulate rapidly and non-invasively different combinations of presbyopic corrections. This tool has applications in systematic clinical evaluation of presbyopia corrections.
Collapse
Affiliation(s)
- Aiswaryah Radhakrishnan
- Laboratory of Visual Optics and Biophotonics, Instituto de Óptica, IO-CSIC, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Daniel Pascual
- Laboratory of Visual Optics and Biophotonics, Instituto de Óptica, IO-CSIC, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Susana Marcos
- Laboratory of Visual Optics and Biophotonics, Instituto de Óptica, IO-CSIC, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carlos Dorronsoro
- Laboratory of Visual Optics and Biophotonics, Instituto de Óptica, IO-CSIC, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- * E-mail:
| |
Collapse
|
7
|
Suchkov N, Fernández EJ, Artal P. Wide-range adaptive optics visual simulator with a tunable lens. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2019; 36:722-730. [PMID: 31044998 DOI: 10.1364/josaa.36.000722] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
An adaptive optics visual simulator (AOVS) with an extended dioptric range was developed, allowing measuring and correcting aberrations in a majority of highly ametropic eyes. In the instrument, a tunable lens is used for defocus correction, while a liquid-crystal-on-silicon spatial light modulator is used for compensating or inducing any other aberration. The instrument incorporates a digital projector, which uses a micromirror array to display the stimuli. A motorized diaphragm enables operation for any physiological pupil size. A full description of the instrument and its calibration are provided, together with the results obtained in seven highly myopic subjects with refraction of -7.2±1.8 D (mean±SD). Refraction obtained with the instrument was compared to the standard refraction prescribed by trial lenses. When using the refraction obtained by the AOVS, the visual acuity (VA) exhibited an average increase of 0.21 (decimal scale). The visual impact of correcting high-order aberrations is presented in three subjects, whose VAs slightly improved with the correction. High myopes are able to benefit from the improved refraction assessment. The new instrument creates a possibility for a wide number of new experiments, especially for eyes exhibiting large refractive errors, where previous AO instruments failed to operate.
Collapse
|
8
|
Impact of intraocular scatter on stereopsis. Vision Res 2018; 153:124-128. [PMID: 30118720 DOI: 10.1016/j.visres.2018.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 07/19/2018] [Accepted: 08/02/2018] [Indexed: 11/21/2022]
Abstract
To investigate the effect of intraocular scatter on stereopsis, we measured stereoacuity with scatter either remaining at the natural eye-induced level or further enhanced by a set of three different scatter filters. Stereo thresholds at different viewing durations were obtained using a psychophysical method of constant stimuli. The results indicate that stereoacuity was degraded with a binocular increase in scatter levels for all the subjects. Measurements were also performed in the presence of interocular differences in scatter levels. In this case, stereoacuity was found to be even a little worse than that obtained with both eyes at a higher scatter level. This suggests that stereoacuity in the presence of interocular differences in scatter levels is mainly dependent on the higher scatter level.
Collapse
|
9
|
Arba Mosquera S, de Ortueta D, Verma S. Corneal functional optical zone under monocular and binocular assessment. EYE AND VISION (LONDON, ENGLAND) 2018; 5:3. [PMID: 29445760 PMCID: PMC5801696 DOI: 10.1186/s40662-018-0097-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/22/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND In this retrospective randomized case series, we compared bilateral symmetry between OD and OS eyes, intercorneal differences and Functional Optical Zone (FOZ) of the corneal aberrations. METHODS Sixty-seven normal subjects (with no ocular pathology) who never had any ocular surgery were bilaterally evaluated at Augenzentrum Recklinghausen (Germany). In all cases, standard examinations and corneal wavefront topography (OPTIKON Scout) were performed. The OD/OS bilateral symmetry was evaluated for corneal wavefront aberrations, and FOZ-values were evaluated from the Root-Mean-Square (RMS) of High-Order Wavefront-Aberration (HOWAb). Moreover, correlations of FOZ, spherical equivalent (SE), astigmatism power, and cardinal and oblique astigmatism for binocular vs. monocular, and binocular vs. intercorneal differences were analyzed. RESULTS Mean FOZ was 6.56 ± 1.13 mm monocularly, 6.97 ± 1.34 mm binocularly, and 7.64 ± 1.30 mm intercorneal difference, with all strongly positively correlated, showing that the diameter of glare-free vision is larger in binocular than monocular conditions. Mean SE was 0.78 ± 1.30 D, and the mean astigmatism power (magnitude) was 0.46 ± 0.52 D binocularly. The corresponding monocular values for these metrics were 0.78 ± 1.30 D and 0.53 ± 0.53 D respectively. SE, astigmatism magnitude, cardinal astigmatism component, and FOZ showed a strong correlation and even symmetry; and oblique astigmatism component showed odd symmetry indicating Enantiomorphism between the left and right eye. CONCLUSIONS These results confirm OD-vs.-OS bilateral symmetry (which influences binocular summation) of HOWAb, FOZ, defocus, astigmatism power, and cardinal and oblique astigmatism. Binocular Functional Optical Zone calculated from corneal wavefront aberrations can be used to optimize refractive surgery design.
Collapse
Affiliation(s)
- Samuel Arba Mosquera
- SCHWIND eye-tech-solutions, D-63801 Kleinostheim, Germany
- Recognized Research Group in Optical Diagnostic Techniques, University of Valladolid, Valladolid, Spain
- Department of Ophthalmology and Sciences of Vision, University of Oviedo, Oviedo, Spain
| | | | - Shwetabh Verma
- SCHWIND eye-tech-solutions, D-63801 Kleinostheim, Germany
- Experimental Radiation Oncology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
- Central Institute for Computer Engineering (ZITI), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
10
|
Marcos S, Werner JS, Burns SA, Merigan WH, Artal P, Atchison DA, Hampson KM, Legras R, Lundstrom L, Yoon G, Carroll J, Choi SS, Doble N, Dubis AM, Dubra A, Elsner A, Jonnal R, Miller DT, Paques M, Smithson HE, Young LK, Zhang Y, Campbell M, Hunter J, Metha A, Palczewska G, Schallek J, Sincich LC. Vision science and adaptive optics, the state of the field. Vision Res 2017; 132:3-33. [PMID: 28212982 PMCID: PMC5437977 DOI: 10.1016/j.visres.2017.01.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 12/27/2022]
Abstract
Adaptive optics is a relatively new field, yet it is spreading rapidly and allows new questions to be asked about how the visual system is organized. The editors of this feature issue have posed a series of question to scientists involved in using adaptive optics in vision science. The questions are focused on three main areas. In the first we investigate the use of adaptive optics for psychophysical measurements of visual system function and for improving the optics of the eye. In the second, we look at the applications and impact of adaptive optics on retinal imaging and its promise for basic and applied research. In the third, we explore how adaptive optics is being used to improve our understanding of the neurophysiology of the visual system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yuhua Zhang
- University of Alabama at Birmingham, Birmingham, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Fuentes JLM, Fernández EJ, Prieto PM, Artal P. Interferometric method for phase calibration in liquid crystal spatial light modulators using a self-generated diffraction-grating. OPTICS EXPRESS 2016; 24:14159-14171. [PMID: 27410574 DOI: 10.1364/oe.24.014159] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An auto-referenced interferometric method for calibrating phase modulation of parallel-aligned liquid crystal (PAL) spatial light modulators (SLM) is described. The method is experimentally straightforward, robust, and requires solely of a collimated beam, with no need of additional optics. This method uses the SLM itself to create a tilted plane wave and a reference wave which mutually interfere. These waves are codified by means of a binary diffraction grating and a uniformly distributed gray level area (piston) into the SLM surface. Phase shift for each gray level addressed to the piston section can then be evaluated. Phase modulation on the SLM can also be retrieved with the proposed method over spatially resolved portions of the surface. Phase information obtained with this novel method is compared to other well established calibration procedures, requiring extra elements and more elaborated optical set-ups. The results show a good agreement with previous methods. The advantages of the new method include high mechanical stability, faster performance, and a significantly easier practical implementation.
Collapse
|
12
|
Kang J, Dai Y, Zhang Y. Temporal integration property of stereopsis after higher-order aberration correction. BIOMEDICAL OPTICS EXPRESS 2015; 6:4472-4482. [PMID: 26601010 PMCID: PMC4646554 DOI: 10.1364/boe.6.004472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/29/2015] [Accepted: 10/09/2015] [Indexed: 06/05/2023]
Abstract
Based on a binocular adaptive optics visual simulator, we investigated the effect of higher-order aberration correction on the temporal integration property of stereopsis. Stereo threshold for line stimuli, viewed in 550nm monochromatic light, was measured as a function of exposure duration, with higher-order aberrations uncorrected, binocularly corrected or monocularly corrected. Under all optical conditions, stereo threshold decreased with increasing exposure duration until a steady-state threshold was reached. The critical duration was determined by a quadratic summation model and the high goodness of fit suggested this model was reasonable. For normal subjects, the slope for stereo threshold versus exposure duration was about -0.5 on logarithmic coordinates, and the critical duration was about 200 ms. Both the slope and the critical duration were independent of the optical condition of the eye, showing no significant effect of higher-order aberration correction on the temporal integration property of stereopsis.
Collapse
Affiliation(s)
- Jian Kang
- The Laboratory on Adaptive Optics, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
- The Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Dai
- The Laboratory on Adaptive Optics, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
- The Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, China
| | - Yudong Zhang
- The Laboratory on Adaptive Optics, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
- The Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, China
| |
Collapse
|
13
|
Fernández EJ, Schwarz C, Prieto PM, Manzanera S, Artal P. Impact on stereo-acuity of two presbyopia correction approaches: monovision and small aperture inlay. BIOMEDICAL OPTICS EXPRESS 2013; 4:822-30. [PMID: 23761846 PMCID: PMC3675862 DOI: 10.1364/boe.4.000822] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/17/2013] [Accepted: 05/02/2013] [Indexed: 05/06/2023]
Abstract
Some of the different currently applied approaches that correct presbyopia may reduce stereovision. In this work, stereo-acuity was measured for two methods: (1) monovision and (2) small aperture inlay in one eye. When performing the experiment, a prototype of a binocular adaptive optics vision analyzer was employed. The system allowed simultaneous measurement and manipulation of the optics in both eyes of a subject. The apparatus incorporated two programmable spatial light modulators: one phase-only device using liquid crystal on silicon technology for wavefront manipulation and one intensity modulator for controlling the exit pupils. The prototype was also equipped with a stimulus generator for creating retinal disparity based on two micro-displays. The three-needle test was programmed for characterizing stereo-acuity. Subjects underwent a two-alternative forced-choice test. The following cases were tested for the stimulus placed at distance: (a) natural vision; (b) 1.5 D monovision; (c) 0.75 D monovision; (d) natural vision and small pupil; (e) 0.75 D monovision and small pupil. In all cases the standard pupil diameter was 4 mm and the small pupil diameter was 1.6 mm. The use of a small aperture significantly reduced the negative impact of monovision on stereopsis. The results of the experiment suggest that combining micro-monovision with a small aperture, which is currently being implemented as a corneal inlay, can yield values of stereoacuity close to those attained under normal binocular vision.
Collapse
|
14
|
Lombardo M, Serrao S, Devaney N, Parravano M, Lombardo G. Adaptive optics technology for high-resolution retinal imaging. SENSORS (BASEL, SWITZERLAND) 2012; 13:334-66. [PMID: 23271600 PMCID: PMC3574679 DOI: 10.3390/s130100334] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 12/05/2012] [Accepted: 12/06/2012] [Indexed: 01/18/2023]
Abstract
Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging.
Collapse
Affiliation(s)
- Marco Lombardo
- Fondazione G.B. Bietti IRCCS, Via Livenza 3, 00198 Rome, Italy; E-Mails: (S.S.); (M.P.)
| | - Sebastiano Serrao
- Fondazione G.B. Bietti IRCCS, Via Livenza 3, 00198 Rome, Italy; E-Mails: (S.S.); (M.P.)
| | - Nicholas Devaney
- Applied Optics Group, School of Physics, National University of Ireland, Galway, Ireland; E-Mail:
| | | | - Giuseppe Lombardo
- CNR-IPCF Unit of Support of Cosenza, c/o University of Calabria, Ponte P. Bucci Cubo 31/C, 87036 Rende, Italy; E-Mail:
- Vision Engineering, Via Adda 7, 00198 Rome, Italy
| |
Collapse
|
15
|
Abstract
A revision of the current state-of-the-art adaptive optics technology for visual sciences is provided. The human eye, as an optical system able to generate images onto the retina, exhibits optical aberrations. Those are continuously changing with time, and they are different for every subject. Adaptive optics is the technology permitting the manipulation of the aberrations, and eventually their correction. Across the different applications of adaptive optics, the current paper focuses on visual simulation. These systems are capable of manipulating the ocular aberrations and simultaneous visual testing though the modified aberrations on real eyes. Some applications of the visual simulators presented in this work are the study of the neural adaptation to the aberrations, the influence of aberrations on accommodation, and the recent development of binocular adaptive optics visual simulators allowing the study of stereopsis.
Collapse
Affiliation(s)
- Enrique Josua Fernández
- Laboratorio de Óptica, Instituto Universitario de investigación en Óptica y Nanofísica (IUiOyN), Universidad de Murcia, Campus de Espinardo (Edificio 34), 30100 Murcia, Spain
| |
Collapse
|
16
|
Abstract
Compared to most ophthalmic technologies, adaptive optics, or AO, is relatively young. The first working systems were presented in 1997 and, owing in part to its complexity, the development of AO systems has been relatively slow. Nevertheless, AO for vision science is coming of age and the scope of applications continues to increase. Applications of AO can be broadly split along two lines; for retinal imaging and for testing visual function. This review will focus on the applications of adaptive optics for testing visual function. Since this represents only a subset of the field of AO for ophthalmoscopy, it is possible to cite virtually every paper that has been published in the field to date. As such, this is a comprehensive review whose intent is to get all readers up to speed on the state of the art. More importantly, perhaps, this review will focus on the types of science that can be accomplished with AO with a view to future applications. The reference list alone is informative, since the reader will quickly discover that the community that is using AO for vision science is rather small. Looking at the dates for the cited papers, the reader will also discover that the field is rapidly expanding.
Collapse
Affiliation(s)
- Austin Roorda
- University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
17
|
Williams DR. Imaging single cells in the living retina. Vision Res 2011; 51:1379-96. [PMID: 21596053 DOI: 10.1016/j.visres.2011.05.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/29/2011] [Accepted: 05/01/2011] [Indexed: 12/31/2022]
Abstract
A quarter century ago, we were limited to a macroscopic view of the retina inside the living eye. Since then, new imaging technologies, including confocal scanning laser ophthalmoscopy, optical coherence tomography, and adaptive optics fundus imaging, transformed the eye into a microscope in which individual cells can now be resolved noninvasively. These technologies have enabled a wide range of studies of the retina that were previously impossible.
Collapse
Affiliation(s)
- David R Williams
- Center for Visual Science, William G. Allyn Professor of Medical Optics, University of Rochester, Rochester, NY 14627-0270, United States.
| |
Collapse
|