1
|
Adhikari P, Uprety S, Feigl B, Zele AJ. Melanopsin-mediated amplification of cone signals in the human visual cortex. Proc Biol Sci 2024; 291:20232708. [PMID: 38808443 PMCID: PMC11285915 DOI: 10.1098/rspb.2023.2708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
The ambient daylight variation is coded by melanopsin photoreceptors and their luxotonic activity increases towards midday when colour temperatures are cooler, and irradiances are higher. Although melanopsin and cone photoresponses can be mediated via separate pathways, the connectivity of melanopsin cells across all levels of the retina enables them to modify cone signals. The downstream effects of melanopsin-cone interactions on human vision are however, incompletely understood. Here, we determined how the change in daytime melanopsin activation affects the human cone pathway signals in the visual cortex. A 5-primary silent-substitution method was developed to evaluate the dependence of cone-mediated signals on melanopsin activation by spectrally tuning the lights and stabilizing the rhodopsin activation under a constant cone photometric luminance. The retinal (white noise electroretinogram) and cortical responses (visual evoked potential) were simultaneously recorded with the photoreceptor-directed lights in 10 observers. By increasing the melanopsin activation, a reverse response pattern was observed with cone signals being supressed in the retina by 27% (p = 0.03) and subsequently amplified by 16% (p = 0.01) as they reach the cortex. We infer that melanopsin activity can amplify cone signals at sites distal to retinal bipolar cells to cause a decrease in the psychophysical Weber fraction for cone vision.
Collapse
Affiliation(s)
- Prakash Adhikari
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
| | - Samir Uprety
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
| | - Beatrix Feigl
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
- Queensland Eye Institute, Brisbane, Queensland 4101, Australia
| | - Andrew J Zele
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
| |
Collapse
|
2
|
Barrionuevo PA, Sandoval Salinas ML, Fanchini JM. Are ipRGCs involved in human color vision? Hints from physiology, psychophysics, and natural image statistics. Vision Res 2024; 217:108378. [PMID: 38458004 DOI: 10.1016/j.visres.2024.108378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/09/2024] [Accepted: 02/25/2024] [Indexed: 03/10/2024]
Abstract
Human photoreceptors consist of cones, rods, and melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs). First studied in circadian regulation and pupillary control, ipRGCs project to a variety of brain centers suggesting a broader involvement beyond non-visual functions. IpRGC responses are stable, long-lasting, and with a particular codification of photoreceptor signals. In comparison with the transient and adaptive nature of cone and rod signals, ipRGCs' signaling might provide an ecological advantage to different attributes of color vision. Previous studies have indicated melanopsin's influence on visual responses yet its contribution to color perception in humans remains debated. We summarized evidence and hypotheses (from physiology, psychophysics, and natural image statistics) about direct and indirect involvement of ipRGCs in human color vision, by first briefly assessing the current knowledge about the role of melanopsin and ipRGCs in vision and codification of spectral signals. We then approached the question about melanopsin activation eliciting a color percept, discussing studies using the silent substitution method. Finally, we explore various avenues through which ipRGCs might impact color perception indirectly, such as through involvement in peripheral color matching, post-receptoral pathways, color constancy, long-term chromatic adaptation, and chromatic induction. While there is consensus about the role of ipRGCs in brightness perception, confirming its direct contribution to human color perception requires further investigation. We proposed potential approaches for future research, emphasizing the need for empirical validation and methodological thoroughness to elucidate the exact role of ipRGCs in human color vision.
Collapse
Affiliation(s)
- Pablo A Barrionuevo
- Allgemeine Psychologie, Justus-Liebig-Universität Gießen, Germany; Instituto de Investigación en Luz, Ambiente y Visión (ILAV), CONICET - Universidad Nacional de Tucumán, Argentina.
| | - María L Sandoval Salinas
- Instituto de Investigación en Luz, Ambiente y Visión (ILAV), CONICET - Universidad Nacional de Tucumán, Argentina; Instituto de Investigaciones de Biodiversidad Argentina (PIDBA), Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Argentina
| | - José M Fanchini
- Instituto de Investigación en Luz, Ambiente y Visión (ILAV), CONICET - Universidad Nacional de Tucumán, Argentina; Departamento de Luminotecnia, Luz y Visión, Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, Argentina
| |
Collapse
|
3
|
Cormenzana Méndez I, Martín A, O'Donell B, Cao D, Barrionuevo PA. Temporal integration of rod signals in luminance and chromatic pathways. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2022; 39:1782-1793. [PMID: 36215550 DOI: 10.1364/josaa.462581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/13/2022] [Indexed: 06/16/2023]
Abstract
We assessed how rod excitation (R) affects luminance (L + M + S) and chromatic [L/(L + M)] reaction times (RTs). A four-primary display based on the overlapped images of two spectrally modified monitors, which allowed specific or combined [L + M + S + R, L/(L + M) + R] photoreceptor stimulation, was used to present a C-target stimulus differing from the background only by the selected stimulation. For the luminance pathway, rod input increased RTs, suggesting a suppressive rod-cone interaction. The responses of the chromatic pathway were faster when rods were involved, suggesting a major role of rods in mesopic color perception.
Collapse
|
4
|
Barrionuevo PA, Paz Filgueira C, Cao D. Is melanopsin activation affecting large field color-matching functions? JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2022; 39:1104-1110. [PMID: 36215541 DOI: 10.1364/josaa.457223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/11/2022] [Indexed: 06/16/2023]
Abstract
Color theory is based on the exclusive activation of cones. However, since the discovery of melanopsin expressing cells in the human retina, evidence of its intrusion in brightness and color vision is increasing. We aimed to assess if differences between peripheral or large field and foveal color matches can be accounted for by melanopsin activation or rod intrusion. Photopic color matches by young observers showed that differences between extrafoveal and foveal results cannot be explained by rod intrusion. Furthermore, statistical analyses on existing color-matching functions suggest a role of melanopsin activation, particularly, in large field S fundamentals.
Collapse
|
5
|
Zandi B, Klabes J, Khanh TQ. Prediction accuracy of L- and M-cone based human pupil light models. Sci Rep 2020; 10:10988. [PMID: 32620793 PMCID: PMC7335057 DOI: 10.1038/s41598-020-67593-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/10/2020] [Indexed: 12/19/2022] Open
Abstract
Multi-channel LED luminaires offer a powerful tool to vary retinal receptor signals while keeping visual parameters such as color or brightness perception constant. This technology could provide new fields of application in indoor lighting since the spectrum can be enhanced individually to the users' favor or task. One possible application would be to optimize a light spectrum by using the pupil diameter as a parameter to increase the visual acuity. A spectral- and time-dependent pupil model is the key requirement for this aim. We benchmarked in our work selected L- and M-cone based pupil models to find the estimation error in predicting the pupil diameter for chromatic and polychromatic spectra at 100 cd/m2. We report an increased estimation error up to 1.21 mm for 450 nm at 60-300 s exposure time. At short exposure times, the pupil diameter was approximately independent of the used spectrum, allowing to use the luminance for a pupil model. Polychromatic spectra along the Planckian locus showed at 60-300 s exposure time, a prediction error within a tolerance range of ± 0.5 mm. The time dependency seems to be more essential than the spectral dependency when using polychromatic spectra.
Collapse
Affiliation(s)
- Babak Zandi
- Department of Electrical Engineering and Information Technology, Laboratory of Lighting Technology, Technical University of Darmstadt, 64289, Darmstadt, Germany.
| | - Julian Klabes
- Department of Electrical Engineering and Information Technology, Laboratory of Lighting Technology, Technical University of Darmstadt, 64289, Darmstadt, Germany
| | - Tran Quoc Khanh
- Department of Electrical Engineering and Information Technology, Laboratory of Lighting Technology, Technical University of Darmstadt, 64289, Darmstadt, Germany
| |
Collapse
|
6
|
Zele AJ, Adhikari P, Cao D, Feigl B. Melanopsin driven enhancement of cone-mediated visual processing. Vision Res 2019; 160:72-81. [DOI: 10.1016/j.visres.2019.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/16/2019] [Accepted: 04/21/2019] [Indexed: 12/13/2022]
|
7
|
Foster DH, Amano K. Hyperspectral imaging in color vision research: tutorial. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2019; 36:606-627. [PMID: 31044981 DOI: 10.1364/josaa.36.000606] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
This tutorial offers an introduction to terrestrial and close-range hyperspectral imaging and some of its uses in human color vision research. The main types of hyperspectral cameras are described together with procedures for image acquisition, postprocessing, and calibration for either radiance or reflectance data. Image transformations are defined for colorimetric representations, color rendering, and cone receptor and postreceptor coding. Several example applications are also presented. These include calculating the color properties of scenes, such as gamut volume and metamerism, and analyzing the utility of color in observer tasks, such as identifying surfaces under illuminant changes. The effects of noise and uncertainty are considered in both image acquisition and color vision applications.
Collapse
|
8
|
Barrionuevo PA, Matesanz BM, Gloriani AH, Arranz I, Issolio L, Mar S, Aparicio JA. Effect of eccentricity and light level on the timing of light adaptation mechanisms. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2018; 35:B144-B151. [PMID: 29603968 DOI: 10.1364/josaa.35.00b144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/24/2018] [Indexed: 06/08/2023]
Abstract
We explored the complexity of the light adaptation process, assessing adaptation recovery (Ar) at different eccentricities and light levels. Luminance thresholds were obtained with transient background fields at mesopic and photopic light levels for temporal retinal eccentricities (0°-15°) with test/background stimulus size of 0.5°/1° using a staircase procedure in a two-channel Maxwellian view optical system. Ar was obtained in comparison with steady data [Vis. Res.125, 12 (2016)VISRAM0042-698910.1016/j.visres.2016.04.008]. Light level proportionally affects Ar only at fovea. Photopic extrafoveal thresholds were one log unit higher for transient conditions. Adaptation was equally fast at low light levels for different retinal locations with variations mainly affected by noise. These results evidence different timing in the mechanisms of adaptation involved.
Collapse
|
9
|
Zele AJ, Adhikari P, Feigl B, Cao D. Cone and melanopsin contributions to human brightness estimation. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2018; 35:B19-B25. [PMID: 29603934 DOI: 10.1364/josaa.35.000b19] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/17/2017] [Indexed: 06/08/2023]
Abstract
We determined the contributions of cone and melanopsin luminance signaling to human brightness perception. The absolute brightness of four narrowband primary lights presented in a full-field Ganzfeld was estimated in two conditions, either cone luminance-equated (186.7-1,867.0 cd·m-2) or melanopsin luminance-equated (31.6-316.3 melanopsin cd·m-2). We show that brightness estimations for each primary light follow an approximately linear increase with increasing cone or melanopsin luminance (in log units), but are not equivalent for primary lights equated with either cone or melanopsin luminance. Instead, brightness estimations result from a combined interaction between cone and melanopsin signaling. Analytical modeling with wavelength-dependent coefficients signifies that melanopsin luminance positively correlates with brightness magnitudes, and the cone luminance has two contribution components, one that is additive to melanopsin luminance and a second that is negative, implying an adaptation process. These results provide a new framework for evaluating the physiological basis of brightness perception and have direct practical applications for the development of energy-efficient light sources.
Collapse
|
10
|
CAO DINGCAI, CHANG ADAM, GAI SHAOYAN. Evidence for an impact of melanopsin activation on unique white perception. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2018; 35:B287-B291. [PMID: 29603954 PMCID: PMC6223255 DOI: 10.1364/josaa.35.00b287] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/05/2018] [Indexed: 05/20/2023]
Abstract
Current models of human color vision only consider cone inputs at photopic light levels, yet it is unclear whether the recently discovered melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) contribute to color perception. Using a lab-made five-primary photostimulator that can independently control the stimulations of rods, cones, and ipRGCs in human retina, we determined the observer's unique white perception, an equilibrium point for signals arising from the opponent mechanisms of color vision, under different levels of melanopsin activation. We found changing melanopsin activation levels shifts the equilibrium point in the chromatic pathways. Our results suggest potential evidence for an impact of melanopsin activation on unique white perception and the existing color vision model for the periphery may need to be revised by incorporating melanopsin signaling.
Collapse
Affiliation(s)
- DINGCAI CAO
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, USA
- Corresponding author:
| | - ADAM CHANG
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - SHAOYAN GAI
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, USA
- Key Laboratory of Measurement and Control for Complex System of Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
11
|
Zele AJ, Feigl B, Adhikari P, Maynard ML, Cao D. Melanopsin photoreception contributes to human visual detection, temporal and colour processing. Sci Rep 2018; 8:3842. [PMID: 29497109 PMCID: PMC5832793 DOI: 10.1038/s41598-018-22197-w] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 02/14/2018] [Indexed: 12/27/2022] Open
Abstract
The visual consequences of melanopsin photoreception in humans are not well understood. Here we studied melanopsin photoreception using a technique of photoreceptor silent substitution with five calibrated spectral lights after minimising the effects of individual differences in optical pre-receptoral filtering and desensitising penumbral cones in the shadow of retinal blood vessels. We demonstrate that putative melanopsin-mediated image-forming vision corresponds to an opponent S-OFF L + M-ON response property, with an average temporal resolution up to approximately 5 Hz, and >10x higher thresholds than red-green colour vision. With a capacity for signalling colour and integrating slowly changing lights, melanopsin-expressing intrinsically photosensitive retinal ganglion cells maybe the fifth photoreceptor type for peripheral vision.
Collapse
Affiliation(s)
- Andrew J Zele
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia.
- School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, Australia.
| | - Beatrix Feigl
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Australia
- Queensland Eye Institute, Brisbane, Australia
| | - Prakash Adhikari
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
- School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, Australia
| | - Michelle L Maynard
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
- School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, Australia
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Australia
| | - Dingcai Cao
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, USA
| |
Collapse
|
12
|
Salari V, Scholkmann F, Vimal RLP, Császár N, Aslani M, Bókkon I. Phosphenes, retinal discrete dark noise, negative afterimages and retinogeniculate projections: A new explanatory framework based on endogenous ocular luminescence. Prog Retin Eye Res 2017; 60:101-119. [DOI: 10.1016/j.preteyeres.2017.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 02/07/2023]
|
13
|
Barrionuevo PA, Cao D. Luminance and chromatic signals interact differently with melanopsin activation to control the pupil light response. J Vis 2016; 16:29. [PMID: 27690169 PMCID: PMC5054726 DOI: 10.1167/16.11.29] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin. These cells receive afferent inputs from rods and cones, which provide inputs to the postreceptoral visual pathways. It is unknown, however, how melanopsin activation is integrated with postreceptoral signals to control the pupillary light reflex. This study reports human flicker pupillary responses measured using stimuli generated with a five-primary photostimulator that selectively modulated melanopsin, rod, S-, M-, and L-cone excitations in isolation, or in combination to produce postreceptoral signals. We first analyzed the light adaptation behavior of melanopsin activation and rod and cones signals. Second, we determined how melanopsin is integrated with postreceptoral signals by testing with cone luminance, chromatic blue-yellow, and chromatic red-green stimuli that were processed by magnocellular (MC), koniocellular (KC), and parvocellular (PC) pathways, respectively. A combined rod and melanopsin response was also measured. The relative phase of the postreceptoral signals was varied with respect to the melanopsin phase. The results showed that light adaptation behavior for all conditions was weaker than typical Weber adaptation. Melanopsin activation combined linearly with luminance, S-cone, and rod inputs, suggesting the locus of integration with MC and KC signals was retinal. The melanopsin contribution to phasic pupil responses was lower than luminance contributions, but much higher than S-cone contributions. Chromatic red-green modulation interacted with melanopsin activation nonlinearly as described by a “winner-takes-all” process, suggesting the integration with PC signals might be mediated by a postretinal site.
Collapse
Affiliation(s)
- Pablo A Barrionuevo
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USAInstitute of Research in Light, Environment and Vision, National University of Tucumán - National Scientific and Technical Research Council, San Miguel de Tucumán, Tucumán
| | - Dingcai Cao
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, ://vpl.uic.edu/
| |
Collapse
|
14
|
Hofmann L, Palczewski K. Advances in understanding the molecular basis of the first steps in color vision. Prog Retin Eye Res 2015; 49:46-66. [PMID: 26187035 DOI: 10.1016/j.preteyeres.2015.07.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 01/05/2023]
Abstract
Serving as one of our primary environmental inputs, vision is the most sophisticated sensory system in humans. Here, we present recent findings derived from energetics, genetics and physiology that provide a more advanced understanding of color perception in mammals. Energetics of cis-trans isomerization of 11-cis-retinal accounts for color perception in the narrow region of the electromagnetic spectrum and how human eyes can absorb light in the near infrared (IR) range. Structural homology models of visual pigments reveal complex interactions of the protein moieties with the light sensitive chromophore 11-cis-retinal and that certain color blinding mutations impair secondary structural elements of these G protein-coupled receptors (GPCRs). Finally, we identify unsolved critical aspects of color tuning that require future investigation.
Collapse
Affiliation(s)
- Lukas Hofmann
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Krzysztof Palczewski
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
15
|
Cao D, Nicandro N, Barrionuevo PA. A five-primary photostimulator suitable for studying intrinsically photosensitive retinal ganglion cell functions in humans. J Vis 2015; 15:15.1.27. [PMID: 25624466 DOI: 10.1167/15.1.27] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) can respond to light directly through self-contained photopigment, melanopsin. IpRGCs also receive synaptic inputs from rods and cones. Thus, studying ipRGC functions requires a novel photostimulating method that can account for all of the photoreceptor inputs. Here, we introduced an inexpensive LED-based five-primary photostimulator that can control the excitations of rods, S-, M-, L-cones, and melanopsin-containing ipRGCs in humans at constant background photoreceptor excitation levels, a critical requirement for studying the adaptation behavior of ipRGCs with rod, cone, or melanopsin input. We described the theory and technical aspects (including optics, electronics, software, and calibration) of the five-primary photostimulator. Then we presented two preliminary studies using the photostimulator we have implemented to measure melanopsin-mediated pupil responses and temporal contrast sensitivity function (TCSF). The results showed that the S-cone input to pupil responses was antagonistic to the L-, M- or melanopsin inputs, consistent with an S-OFF and (L + M)-ON response property of primate ipRGCs (Dacey et al., 2005). In addition, the melanopsin-mediated TCSF had a distinctive pattern compared with L + M or S-cone mediated TCSF. Other than controlling individual photoreceptor excitation independently, the five-primary photostimulator has the flexibility in presenting stimuli modulating any combination of photoreceptor excitations, which allows researchers to study the mechanisms by which ipRGCs combine various photoreceptor inputs.
Collapse
Affiliation(s)
- Dingcai Cao
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Nathaniel Nicandro
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Pablo A Barrionuevo
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
16
|
Zele AJ, Cao D. Vision under mesopic and scotopic illumination. Front Psychol 2015; 5:1594. [PMID: 25657632 PMCID: PMC4302711 DOI: 10.3389/fpsyg.2014.01594] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/28/2014] [Indexed: 11/21/2022] Open
Abstract
Evidence has accumulated that rod activation under mesopic and scotopic light levels alters visual perception and performance. Here we review the most recent developments in the measurement of rod and cone contributions to mesopic color perception and temporal processing, with a focus on data measured using a four-primary photostimulator method that independently controls rod and cone excitations. We discuss the findings in the context of rod inputs to the three primary retinogeniculate pathways to understand rod contributions to mesopic vision. Additionally, we present evidence that hue perception is possible under scotopic, pure rod-mediated conditions that involves cortical mechanisms.
Collapse
Affiliation(s)
- Andrew J. Zele
- Visual Science Laboratory, School of Optometry and Vision Science & Institute of Health and Biomedical Innovation, Queensland University of TechnologyBrisbane, QLD, Australia
| | - Dingcai Cao
- Visual Perception Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at ChicagoChicago, IL, USA
| |
Collapse
|
17
|
Cao D, Barrionuevo PA. Estimating photoreceptor excitations from spectral outputs of a personal light exposure measurement device. Chronobiol Int 2014; 32:270-80. [PMID: 25290040 DOI: 10.3109/07420528.2014.966269] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The intrinsic circadian clock requires photoentrainment to synchronize the 24-hour solar day. Therefore, light stimulation is an important component of chronobiological research. Currently, the chronobiological research field overwhelmingly uses photopic illuminance that is based on the luminous efficiency function, V(λ), to quantify light levels. However, recent discovery of intrinsically photosensitive retinal ganglion cells (ipRGCs), which are activated by self-contained melanopsin photopigment and also by inputs from rods and cones, makes light specification using a one-dimensional unit inadequate. Since the current understanding of how different photoreceptor inputs contribute to the circadian system through ipRGCs is limited, it is recommended to specify light in terms of the excitations of five photoreceptors (S-, M-, L-cones, rods and ipRGCs; Lucas et al., 2014). In the current study, we assessed whether the spectral outputs from a commercially available spectral watch (i.e. Actiwatch Spectrum) could be used to estimate photoreceptor excitations. Based on the color sensor spectral sensitivity functions from a previously published work, as well as from our measurements, we computed spectral outputs in the long-wavelength range (R), middle-wavelength range (G), short-wavelength range (B) and broadband range (W) under 52 CIE illuminants (25 daylight illuminants, 27 fluorescent lights). We also computed the photoreceptor excitations for each illuminant using human photoreceptor spectral sensitivity functions. Linear regression analyses indicated that the Actiwatch spectral outputs could predict photoreceptor excitations reliably, under the assumption of linear responses of the Actiwatch color sensors. In addition, R, G, B outputs could classify illuminant types (fluorescent versus daylight illuminants) satisfactorily. However, the assessment of actual Actiwatch recording under several testing light sources showed that the spectral outputs were subject to great non-linearity, leading to less accurate estimation of photoreceptor excitations. Based on our analyses, we recommend that each spectral watch should be calibrated to measure spectral sensitivity functions and linearization characteristics for each sensor to have an accurate estimation of photoreceptor excitations. The method we provided to estimate photoreceptor excitations from the outputs of spectral watches could be used for chronobiological studies that can tolerate an error in the range of 0.2-0.5 log units. Our method can be easily expanded to incorporate linearization functions to have more accurate estimations.
Collapse
Affiliation(s)
- Dingcai Cao
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago , Chicago, IL , USA
| | | |
Collapse
|