1
|
Greene MJ, Pandiyan VP, Sabesan R, Tuten WS. Local variations in L/M ratio influence the detection and color naming of small spots. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639104. [PMID: 40060642 PMCID: PMC11888223 DOI: 10.1101/2025.02.19.639104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
The distribution of long-wavelength sensitive (L) and middle-wavelength sensitive (M) cones in the retina determines how different frequencies of incident light are sampled across space, and has been hypothesized to influence spatial and color vision. We asked whether the detection and color naming of small, short-duration increment stimuli depend on the relative numbers of L and M cones illuminated. Stimuli were corrected for optical aberrations by an adaptive optics system, and targeted to locations in the parafovea where cone spectral types were known. We found that sensitivity to 680 nm light, normalized by sensitivity to 543 nm light, grew with the proportion of L cones at the stimulated locus, though intra- and intersubject variability was considerable. A similar trend was derived from a simple model of the achromatic (L+M) pathway, as well as from photoreceptor-level ideal observers, suggesting that small spot detection mainly relies on a non-opponent mechanism. Most stimuli were called achromatic, with red and green responses becoming more common as stimulus intensity and local L/M ratio symmetry increased. Our detection data confirm earlier reports that small spot psychophysics can reveal information about local cone topography, and our color naming findings suggest that chromatic sensitivity may improve when the L/M ratio approaches unity.
Collapse
Affiliation(s)
- Maxwell J Greene
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA, USA
| | - Vimal P Pandiyan
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Ramkumar Sabesan
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - William S Tuten
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
2
|
Vanston JE, Boehm AE, Tuten WS, Roorda A. It's not easy seeing green: The veridical perception of small spots. J Vis 2023; 23:2. [PMID: 37133838 PMCID: PMC10166115 DOI: 10.1167/jov.23.5.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/26/2023] [Indexed: 05/04/2023] Open
Abstract
When single cones are stimulated with spots of 543-nm light presented against a white background, subjects report percepts that vary between predominately red, white, and green. However, light of the same spectral composition viewed over a large field under normal viewing conditions looks invariably green and highly saturated. It remains unknown what stimulus parameters are most important for governing the color appearance in the transition between these two extreme cases. The current study varied the size, intensity and retinal motion of stimuli presented in an adaptive optics scanning laser ophthalmoscope. Stimuli were either stabilized on target locations or allowed to drift across the retina with the eye's natural motion. Increasing both stimulus size and intensity led to higher likelihoods that monochromatic spots of light were perceived as green, whereas only higher intensities led to increases in perceived saturation. The data also show an interaction between size and intensity, suggesting that the balance between magnocellular and parvocellular activation may be critical factors for color perception. Surprisingly, under the range of conditions tested, color appearance did not depend on whether stimuli were stabilized. Sequential activation of many cones does not appear to drive hue and saturation perception as effectively as simultaneous activation of many cones.
Collapse
Affiliation(s)
- John Erik Vanston
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA
| | - Alexandra E Boehm
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA
| | - William S Tuten
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA
| | - Austin Roorda
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA
| |
Collapse
|
3
|
Lowndes R, Welbourne L, Williams M, Gouws A, Wade A, Morland A. Increasing spatial frequency of S-cone defined gratings reduces their visibility and brain response more than for gratings defined by L-M cone contrast. Vision Res 2023; 207:108209. [PMID: 36871329 DOI: 10.1016/j.visres.2023.108209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 03/06/2023]
Abstract
Chromatic sensitivity reduces as spatial frequency increases. Here, we explore the behavioural and neuronal responses to chromatic stimuli at two spatial frequencies for which the difference in sensitivity will be greater for S-cone than L-M stimuli. Luminance artefacts were removed using the Random Luminance Modulation (RLM) technique. As expected, doubling the spatial frequency increased the detection threshold more for S-cone than for isoluminant L-M gratings. We then used fMRI to measure the cortical BOLD responses to the same two chromatic stimuli (S and L-M) at the same two spatial frequencies. Responses were measured in six visual areas (V1, V2, V3, V3a, hV4, TO1/2). We found a significant interaction between spatial frequency in V1, V2 and V4 suggesting that the behaviourally observed increase in contrast threshold for high spatial frequency S-cone stimuli is reflected in these retinotopic areas. Our measurements show that neural responses consistent with psychophysical behaviour in a colour detection task can be observed as early as primary visual cortex.
Collapse
Affiliation(s)
- Rebecca Lowndes
- Department of Psychology, University of York, United Kingdom; York Neuroimaging Centre, University of York, United Kingdom.
| | - Lauren Welbourne
- Department of Psychology, University of York, United Kingdom; York Neuroimaging Centre, University of York, United Kingdom
| | - Molly Williams
- Department of Psychology, University of York, United Kingdom
| | - Andre Gouws
- Department of Psychology, University of York, United Kingdom; York Neuroimaging Centre, University of York, United Kingdom
| | - Alex Wade
- Department of Psychology, University of York, United Kingdom; York Neuroimaging Centre, University of York, United Kingdom; York Biomedical Research Institute, University of York, United Kingdom
| | - Antony Morland
- Department of Psychology, University of York, United Kingdom; York Neuroimaging Centre, University of York, United Kingdom; York Biomedical Research Institute, University of York, United Kingdom
| |
Collapse
|
4
|
Rezeanu D, Neitz M, Neitz J. From cones to color vision: a neurobiological model that explains the unique hues. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2023; 40:A1-A8. [PMID: 37132996 PMCID: PMC11016238 DOI: 10.1364/josaa.477227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/30/2022] [Indexed: 05/04/2023]
Abstract
The irreducible unique hues-red, green, blue, and yellow-remain one of the great mysteries of vision science. Attempts to create a physiologically parsimonious model that can predict the spectral locations of the unique hues all rely on at least one post hoc adjustment to produce appropriate loci for unique green and unique red, and struggle to explain the non-linearity of the Blue/Yellow system. We propose a neurobiological color vision model that overcomes these challenges by using physiological cone ratios, cone-opponent normalization to equal-energy white, and a simple adaptation mechanism to produce color-opponent mechanisms that accurately predict the spectral locations and variability of the unique hues.
Collapse
Affiliation(s)
- Dragos Rezeanu
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98109, USA
| | - Maureen Neitz
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA
| | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
5
|
Pandiyan VP, Schleufer S, Slezak E, Fong J, Upadhyay R, Roorda A, Ng R, Sabesan R. Characterizing cone spectral classification by optoretinography. BIOMEDICAL OPTICS EXPRESS 2022; 13:6574-6594. [PMID: 36589563 PMCID: PMC9774847 DOI: 10.1364/boe.473608] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 05/02/2023]
Abstract
Light propagation in photoreceptor outer segments is affected by photopigment absorption and the phototransduction amplification cascade. Photopigment absorption has been studied using retinal densitometry, while recently, optoretinography (ORG) has provided an avenue to probe changes in outer segment optical path length due to phototransduction. With adaptive optics (AO), both densitometry and ORG have been used for cone spectral classification based on the differential bleaching signatures of the three cone types. Here, we characterize cone classification by ORG, implemented in an AO line-scan optical coherence tomography (OCT), and compare it against densitometry. The cone mosaics of five color normal subjects were classified using ORG showing high probability (∼0.99), low error (<0.22%), high test-retest reliability (∼97%), and short imaging durations (< 1 hour). Of these, the cone spectral assignments in two subjects were compared against AO-scanning laser opthalmoscope densitometry. High agreement (mean: 91%) was observed between the two modalities in these two subjects, with measurements conducted 6-7 years apart. Overall, ORG benefits from higher sensitivity and dynamic range to probe cone photopigments compared to densitometry, and thus provides greater fidelity for cone spectral classification.
Collapse
Affiliation(s)
- Vimal Prabhu Pandiyan
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA, USA
| | - Sierra Schleufer
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
| | - Emily Slezak
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA, USA
| | - James Fong
- Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - Rishi Upadhyay
- Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - Austin Roorda
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA, USA
| | - Ren Ng
- Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - Ramkumar Sabesan
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Bedggood P, Britten-Jones AC, Ayton LN, Metha A. Assessment of photoreceptor function with ultrafast retinal densitometry. BIOMEDICAL OPTICS EXPRESS 2022; 13:5311-5326. [PMID: 36425640 PMCID: PMC9664880 DOI: 10.1364/boe.472174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 05/02/2023]
Abstract
The optical density of visual pigment can be measured by imaging the dark-adapted eye while bleaching with visible light. This measurement can be made for individual photoreceptor cells using adaptive optics; however, activation of the phototransduction cascade imparts rapid changes in phase that modulate the signal via optical interference. This limits utility because data must be averaged over many experimental runs. Here we used a "flood" illuminated adaptive optics system at 4000 fps, bright light to achieve rapid bleaching, and broad illumination bandwidth to mitigate interference effects. Data were super-resolved using the natural motion of the eye to overcome the reduced pixel resolution of the ultrafast camera. This approach was applied to classify the trichromatic cone photoreceptor mosaic at a single fixation locus within the foveal region of 3 healthy subjects. Subjects were dark adapted for 6 minutes to replenish cone photopigment. This was followed either directly by imaging at 555 ± 50 nm, or by first pre-adapting the retina to 700 nm light to preferentially deplete "L" cone pigment. A total of 3,252 cones were classified as either "S", "M", or "L" type based on clustering of the intensity data observed under these two conditions. Mean classification probability ranged from 99.3 to 99.8%, with individual cell probabilities exceeding 95% in 97.0 to 99.2% of cones. Accuracy of cone classification peaked when using the first 10-30 ms of data, with significant reductions in accuracy noted with the inclusion of data from later times. Our results show that rapid bleaching and data acquisition significantly improve the robustness of cell-resolved densitometry.
Collapse
Affiliation(s)
- Phillip Bedggood
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Australia
| | - Alexis Ceecee Britten-Jones
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Lauren N. Ayton
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Department of Surgery (Ophthalmology), The University of Melbourne, East Melbourne, Australia
| | - Andrew Metha
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Australia
| |
Collapse
|
7
|
Rezeanu D, Neitz M, Neitz J. How We See Black and White: The Role of Midget Ganglion Cells. Front Neuroanat 2022; 16:944762. [PMID: 35864822 PMCID: PMC9294633 DOI: 10.3389/fnana.2022.944762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
According to classical opponent color theory, hue sensations are mediated by spectrally opponent neurons that are excited by some wavelengths of light and inhibited by others, while black-and-white sensations are mediated by spectrally non-opponent neurons that respond with the same sign to all wavelengths. However, careful consideration of the morphology and physiology of spectrally opponent L vs. M midget retinal ganglion cells (RGCs) in the primate retina indicates that they are ideally suited to mediate black-and-white sensations and poorly suited to mediate color. Here we present a computational model that demonstrates how the cortex could use unsupervised learning to efficiently separate the signals from L vs. M midget RGCs into distinct signals for black and white based only correlation of activity over time. The model also reveals why it is unlikely that these same ganglion cells could simultaneously mediate our perception of red and green, and shows how, in theory, a separate small population of midget RGCs with input from S, M, and L cones would be ideally suited to mediating hue perception.
Collapse
Affiliation(s)
| | | | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, WA, United States
| |
Collapse
|
8
|
Kanematsu T, Koida K. Influence of Stimulus Size on Simultaneous Chromatic Induction. Front Psychol 2022; 13:818149. [PMID: 35140670 PMCID: PMC8818722 DOI: 10.3389/fpsyg.2022.818149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022] Open
Abstract
Chromatic induction is a major contextual effect of color appearance. Patterned backgrounds are known to induce strong chromatic induction effects. However, it has not been clarified whether the spatial extent of the chromatic surrounding induces a chromatic contrast or assimilation effects. In this study, we examined the influence of the width of a center line and its flanking white contour on the color appearance when the line was surrounded by chromatic backgrounds. A strong color shift was observed when the center line was flanked by white contours with the L/M- and S-cone chromatic backgrounds. There was a difference between the optimal widths of the center line and the contour for the shift in color appearance for the L/M-cone chromaticity (0.9 and 1.1–1.7 min, respectively) and the S-cone chromaticity (8.2–17.5 and 0.9–2.5 min, respectively). The optimal width of the center line for the L/M-cone was finer than the resolution-limit width of the chromatic contrast sensitivity and coarser than that of the luminance contrast sensitivity. Thus, the color appearance of the center line could be obtained by integrating broad chromatic information and fine luminance details. Due to blurring and chromatic aberrations, the simulated artifact was large for the darker center line and S-cone background, thus suggesting that the artifact could explain the luminance dependency of the induction along the S-cone chromaticity. Moreover, the findings of this study reveal that the dominant factor of the color shift is neural instead of optical.
Collapse
Affiliation(s)
- Tama Kanematsu
- Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kowa Koida
- Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Japan
- Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, Toyohashi, Japan
- *Correspondence: Kowa Koida,
| |
Collapse
|
9
|
Zhang LQ, Cottaris NP, Brainard DH. An image reconstruction framework for characterizing initial visual encoding. eLife 2022; 11:e71132. [PMID: 35037622 PMCID: PMC8846596 DOI: 10.7554/elife.71132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
We developed an image-computable observer model of the initial visual encoding that operates on natural image input, based on the framework of Bayesian image reconstruction from the excitations of the retinal cone mosaic. Our model extends previous work on ideal observer analysis and evaluation of performance beyond psychophysical discrimination, takes into account the statistical regularities of the visual environment, and provides a unifying framework for answering a wide range of questions regarding the visual front end. Using the error in the reconstructions as a metric, we analyzed variations of the number of different photoreceptor types on human retina as an optimal design problem. In addition, the reconstructions allow both visualization and quantification of information loss due to physiological optics and cone mosaic sampling, and how these vary with eccentricity. Furthermore, in simulations of color deficiencies and interferometric experiments, we found that the reconstructed images provide a reasonable proxy for modeling subjects' percepts. Lastly, we used the reconstruction-based observer for the analysis of psychophysical threshold, and found notable interactions between spatial frequency and chromatic direction in the resulting spatial contrast sensitivity function. Our method is widely applicable to experiments and applications in which the initial visual encoding plays an important role.
Collapse
Affiliation(s)
- Ling-Qi Zhang
- Department of Psychology, University of PennsylvaniaPhiladelphiaUnited States
| | - Nicolas P Cottaris
- Department of Psychology, University of PennsylvaniaPhiladelphiaUnited States
| | - David H Brainard
- Department of Psychology, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
10
|
Horwitz GD. Temporal filtering of luminance and chromaticity in macaque visual cortex. iScience 2021; 24:102536. [PMID: 34189430 PMCID: PMC8219838 DOI: 10.1016/j.isci.2021.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/02/2021] [Accepted: 05/11/2021] [Indexed: 11/23/2022] Open
Abstract
Contrast sensitivity peaks near 10 Hz for luminance modulations and at lower frequencies for modulations between equiluminant lights. This difference is rooted in retinal filtering, but additional filtering occurs in the cerebral cortex. To measure the cortical contributions to luminance and chromatic temporal contrast sensitivity, signals in the lateral geniculate nucleus (LGN) were compared to the behavioral contrast sensitivity of macaque monkeys. Long wavelength-sensitive (L) and medium wavelength-sensitive (M) cones were modulated in phase to produce a luminance modulation (L + M) or in counterphase to produce a chromatic modulation (L - M). The sensitivity of LGN neurons was well matched to behavioral sensitivity at low temporal frequencies but was approximately 7 times greater at high temporal frequencies. Similar results were obtained for L + M and L - M modulations. These results show that differences in the shapes of the luminance and chromatic temporal contrast sensitivity functions are due almost entirely to pre-cortical mechanisms.
Collapse
Affiliation(s)
- Gregory D. Horwitz
- Department of Physiology and Biophysics, Washington National Primate Research Center, University of Washington, 1959 N.E. Pacific Street, HSB I-714, Box 357290, Seattle, WA 98195, USA
| |
Collapse
|