1
|
Cordella F, Ferrucci L, D’Antoni C, Ghirga S, Brighi C, Soloperto A, Gigante Y, Ragozzino D, Bezzi P, Di Angelantonio S. Human iPSC-Derived Cortical Neurons Display Homeostatic Plasticity. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111884. [PMID: 36431019 PMCID: PMC9696876 DOI: 10.3390/life12111884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Maintaining the excitability of neurons and circuits is fundamental for healthy brain functions. The global compensatory increase in excitatory synaptic strength, in response to decreased activity, is one of the main homeostatic mechanisms responsible for such regulation. This type of plasticity has been extensively characterized in rodents in vivo and in vitro, but few data exist on human neurons maturation. We have generated an in vitro cortical model system, based on differentiated human-induced pluripotent stem cells, chronically treated with tetrodotoxin, to investigate homeostatic plasticity at different developmental stages. Our findings highlight the presence of homeostatic plasticity in human cortical networks and show that the changes in synaptic strength are due to both pre- and post-synaptic mechanisms. Pre-synaptic plasticity involves the potentiation of neurotransmitter release machinery, associated to an increase in synaptic vesicle proteins expression. At the post-synaptic level, we report an increase in the expression of post-synaptic density proteins, involved in glutamatergic receptor anchoring. These results extend our understanding of neuronal homeostasis and reveal the developmental regulation of its expression in human cortical networks. Since induced pluripotent stem cell-derived neurons can be obtained from patients with neurodevelopmental and neurodegenerative diseases, our platform offers a versatile model for assessing human neural plasticity under physiological and pathological conditions.
Collapse
Affiliation(s)
- Federica Cordella
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- & Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Laura Ferrucci
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | - Chiara D’Antoni
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- & Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Silvia Ghirga
- Center for Life Nano- & Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Carlo Brighi
- Center for Life Nano- & Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
- CrestOptics S.p.A., Via di Torre Rossa 66, 00165 Rome, Italy
| | - Alessandro Soloperto
- Center for Life Nano- & Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Ylenia Gigante
- Center for Life Nano- & Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
- D-Tails s.r.l., Via di Torre Rossa 66, 00165 Rome, Italy
| | - Davide Ragozzino
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Santa Lucia Foundation, European Center for Brain Research, 00143 Rome, Italy
| | - Paola Bezzi
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Department of Fundamental Neurosciences, University of Lausanne, 1015 Lausanne, Switzerland
- Correspondence: or (P.B.); or (S.D.A.)
| | - Silvia Di Angelantonio
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- & Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
- D-Tails s.r.l., Via di Torre Rossa 66, 00165 Rome, Italy
- Correspondence: or (P.B.); or (S.D.A.)
| |
Collapse
|
2
|
Curia G, Estrada-Camarena E, Manjarrez E, Mizuno H. Editorial: In vivo investigations on neurological disorders: From traditional approaches to forefront technologies. Front Neurosci 2022; 16:1052089. [PMID: 36330344 PMCID: PMC9623258 DOI: 10.3389/fnins.2022.1052089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Giulia Curia
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- *Correspondence: Giulia Curia
| | - Erika Estrada-Camarena
- Laboratory of Neuropsychopharmacology, Neuroscience, National Institute of Psychiatry Ramon de la Fuente Muñiz (INPRFM), Mexico City, Mexico
| | - Elias Manjarrez
- Institute of Physiology, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Hidenobu Mizuno
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
3
|
Brighi C, Salaris F, Soloperto A, Cordella F, Ghirga S, de Turris V, Rosito M, Porceddu PF, D’Antoni C, Reggiani A, Rosa A, Di Angelantonio S. Novel fragile X syndrome 2D and 3D brain models based on human isogenic FMRP-KO iPSCs. Cell Death Dis 2021; 12:498. [PMID: 33993189 PMCID: PMC8124071 DOI: 10.1038/s41419-021-03776-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 02/04/2023]
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder, characterized by intellectual disability and sensory deficits, caused by epigenetic silencing of the FMR1 gene and subsequent loss of its protein product, fragile X mental retardation protein (FMRP). Delays in synaptic and neuronal development in the cortex have been reported in FXS mouse models; however, the main goal of translating lab research into pharmacological treatments in clinical trials has been so far largely unsuccessful, leaving FXS a still incurable disease. Here, we generated 2D and 3D in vitro human FXS model systems based on isogenic FMR1 knock-out mutant and wild-type human induced pluripotent stem cell (hiPSC) lines. Phenotypical and functional characterization of cortical neurons derived from FMRP-deficient hiPSCs display altered gene expression and impaired differentiation when compared with the healthy counterpart. FXS cortical cultures show an increased number of GFAP positive cells, likely astrocytes, increased spontaneous network activity, and depolarizing GABAergic transmission. Cortical brain organoid models show an increased number of glial cells, and bigger organoid size. Our findings demonstrate that FMRP is required to correctly support neuronal and glial cell proliferation, and to set the correct excitation/inhibition ratio in human brain development.
Collapse
Affiliation(s)
- Carlo Brighi
- grid.25786.3e0000 0004 1764 2907Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy ,grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Federico Salaris
- grid.25786.3e0000 0004 1764 2907Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy ,grid.7841.aDepartment of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessandro Soloperto
- grid.25786.3e0000 0004 1764 2907Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Federica Cordella
- grid.25786.3e0000 0004 1764 2907Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy ,grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Silvia Ghirga
- grid.25786.3e0000 0004 1764 2907Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy ,grid.7841.aDepartment of Physics, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Valeria de Turris
- grid.25786.3e0000 0004 1764 2907Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Maria Rosito
- grid.25786.3e0000 0004 1764 2907Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Pier Francesca Porceddu
- grid.25786.3e0000 0004 1764 2907D3 Validation Research Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Chiara D’Antoni
- grid.25786.3e0000 0004 1764 2907Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy ,grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Angelo Reggiani
- grid.25786.3e0000 0004 1764 2907D3 Validation Research Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Alessandro Rosa
- grid.25786.3e0000 0004 1764 2907Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy ,grid.7841.aDepartment of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Silvia Di Angelantonio
- grid.25786.3e0000 0004 1764 2907Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy ,grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
4
|
Spiryova DV, Vorobev AY, Klimontov VV, Koroleva EA, Moskalensky AE. Optical uncaging of ADP reveals the early calcium dynamics in single, freely moving platelets. BIOMEDICAL OPTICS EXPRESS 2020; 11:3319-3330. [PMID: 32637257 PMCID: PMC7316007 DOI: 10.1364/boe.392745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Platelet activation is considered to be a cornerstone in pathogenesis of cardiovascular disease. The assessment of platelet activation at the single-cell level is a promising approach for the research of platelet function in physiological and pathological conditions. Previous studies used the immobilization of platelets on the surface, which significantly alters the activation signaling. Here we show that the use of photolabile "caged" analog of ADP allows one to track the very early stage of platelet activation in single, freely moving cells. In this approach, the diffusion step and ADP receptor ligation are separated in time, and a millisecond-timescale optical pulse may trigger the activation. The technique allows us to measure the delay (lag time) between the stimulus and calcium response in platelets. We also propose a simple model function for calcium peaks, which is in good agreement with the measured data. The proposed technique and model function can be used for in-depth studies of platelet physiology.
Collapse
Affiliation(s)
| | - Alexei Yu. Vorobev
- Novosibirsk State University, Novosibirsk, 630090, Russia
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk, 630090, Russia
| | - Vadim V. Klimontov
- Novosibirsk State University, Novosibirsk, 630090, Russia
- Research Institute of Clinical and Experimental Lymphology – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630117, Russia
| | - Elena A. Koroleva
- Novosibirsk State University, Novosibirsk, 630090, Russia
- Research Institute of Clinical and Experimental Lymphology – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630117, Russia
| | - Alexander E. Moskalensky
- Novosibirsk State University, Novosibirsk, 630090, Russia
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Novosibirsk, 630090, Russia
| |
Collapse
|
5
|
Mabil P, Huidobro N, Torres-Ramirez O, Flores-Hernandez J, Flores A, Gutierrez R, Manjarrez E. Noisy Light Augments the Na + Current in Somatosensory Pyramidal Neurons of Optogenetic Transgenic Mice. Front Neurosci 2020; 14:490. [PMID: 32528244 PMCID: PMC7263390 DOI: 10.3389/fnins.2020.00490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/20/2020] [Indexed: 12/26/2022] Open
Abstract
In previous reports, we developed a method to apply Brownian optogenetic noise-photostimulation (BONP, 470 nm) up to 0.67 mW on the barrel cortex of in vivo ChR2 transgenic mice. In such studies, we found that the BONP produces an increase in the evoked field potentials and the neuronal responses of pyramidal neurons induced by somatosensory mechanical stimulation. Here we extended such findings by examining whether the same type of BONP augments the Na+ current amplitude elicited by voltage-clamp ramps of dissociated pyramidal neurons from the somatosensory cortex of ChR2 transgenic and wild type mice. We found that in all neurons from the ChR2 transgenic mice, but none of the wild type mice, the peak amplitude of a TTX-sensitive Na+ current and its inverse of latency exhibited inverted U-like graphs as a function of the BONP level. It means that an intermediate level of BONP increases both the peak amplitude of the Na+ current and its inverse of latency. Our research suggests that the impact of BONP on the Na+ channels of pyramidal neurons could be associated with the observed augmentation-effects in our previous in vivo preparation. Moreover, it provides caution information for the use of an appropriate range of light intensity, <0.67 mW, which could avoid opto non-genetics (also termed “optonongenetic”) related responses due to light-induced temperature changes.
Collapse
Affiliation(s)
- Pedro Mabil
- Laboratory of Integrative Neurophysiology, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Nayeli Huidobro
- Laboratory of Integrative Neurophysiology, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico.,Decanato de Ciencias Biológicas, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla, Mexico
| | - Oswaldo Torres-Ramirez
- Laboratory of Neuromodulation, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Jorge Flores-Hernandez
- Laboratory of Neuromodulation, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Amira Flores
- Laboratory of Integrative Neurophysiology, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ranier Gutierrez
- Departamento de Farmacología, CINVESTAV-IPN, Mexico City, Mexico
| | - Elias Manjarrez
- Laboratory of Integrative Neurophysiology, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|