1
|
Pang B, Iqbal D, Sarfraz A, Biedermann PU, Erbe A. Differences in perchlorate adsorption to azobenzene monolayers on gold formed from thioacetate and thiol precursors. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2021-3143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Modification of metal surfaces with complex molecules opens interesting opportunities to build additional functionality into these surfaces. In this work, self assembled monolayers (SAMs) based on the same photoswitchable azobenzene motif but with different head groups have been synthesized and their SAMs on Au(111)/Si substrates have been characterized. 3-[(4-phenylazo)phenoxy]propyl thiol (PAPT) and its acetyl group protected analog, 3-[(4-phenylazo)phenoxy]propyl thioacetate (PAPA), have been synthesized. SAMs from PAPT and PAPA have been characterized by infrared (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), ellipsometry and cyclic voltammetry (CV). The SAM-forming units of both SAMs are the same, as confirmed by IR and XPS, and the SAMs have similar surface coverage, as evidenced by analysis of the reductive desorption peaks in CVs. The tilt angle of the azobenzene moiety was ca. 75° with respect to the surface normal as determined by IR spectroscopy, i.e., the molecules are lying quite flat on the gold surface. Despite similar surface coverages, the CVs for PAPT in aqueous perchlorate solution show a typical perchlorate adsorption peak to gold, whereas the corresponding experiments with PAPA show no perchlorate adsorption at all. In conclusion, SAM formation can lead to an increase in the number of electrochemically accessible surface sites on the final, SAM covered surface. Whether the amount of such sites increases or decreases, depends on the precursor. The precursor most likely affects the adsorption mechanism and thus the atomic surface structure of the metal at the metal/SAM interface. Thus, details of the SAM formation mechanism, which is affected by the precursor used, can have quite strong effects on the electrochemical properties, and likely also electrocatalytic properties, of the resulting modified surface.
Collapse
Affiliation(s)
- Beibei Pang
- Max-Planck-Institut für Eisenforschung GmbH , Max-Planck-Str., 1, 40237 Düsseldorf , Germany
| | - Danish Iqbal
- Max-Planck-Institut für Eisenforschung GmbH , Max-Planck-Str., 1, 40237 Düsseldorf , Germany
| | - Adnan Sarfraz
- Max-Planck-Institut für Eisenforschung GmbH , Max-Planck-Str., 1, 40237 Düsseldorf , Germany
| | - P. Ulrich Biedermann
- Max-Planck-Institut für Eisenforschung GmbH , Max-Planck-Str., 1, 40237 Düsseldorf , Germany
| | - Andreas Erbe
- Department of Materials Science and Engineering , NTNU, Norwegian University of Science and Technology , 7491 Trondheim , Norway
| |
Collapse
|
2
|
Tan J, Pei Q, Zhang L, Ye S. Evidence for a Local Field Effect in Surface Plasmon-Enhanced Sum Frequency Generation Vibrational Spectra. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6099-6105. [PMID: 35499917 DOI: 10.1021/acs.langmuir.2c00457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface plasmon-enhanced vibrational spectroscopy has been demonstrated to be an important highly sensitive diagnostic technique, but its enhanced mechanism is yet to be explored. In this study, we couple femtosecond sum frequency generation vibrational spectroscopy (SFG-VS) with surface plasmon generated by the excitation of localized gold nanorods/nanoparticles and investigate the plasmonically enhanced factors (EFs) of SFG signals from poly(methyl methacrylate) films. Through monitoring the SFG intensity of carbonyl and ester methyl groups, we have established a correlation between EFs and the coupling of localized surface plasmon resonance with SFG and visible beams. It is found that the total enhanced factor is approximately proportional to the square of an enhanced factor of the SFG electromagnetic field and the fourth power of the enhanced factor of the visible electromagnetic field. The local field effect is roughly expressed to be the square of an enhanced factor of the visible electromagnetic field. This finding will help to guide the experimental design of plasmon-enhanced SFG to drastically improve the detection sensitivity and thus provide greater insight into the ultrafast dynamics near plasmonic surfaces.
Collapse
Affiliation(s)
- Junjun Tan
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Quanbing Pei
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Liang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
3
|
Wang H, Hu XH, Wang HF. Temporal and Chirp Effects of Laser Pulses on the Spectral Lineshape in Sum-Frequency Generation Vibrational Spectroscopy. J Chem Phys 2022; 156:204706. [DOI: 10.1063/5.0088506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Assignment and interpretation of the sum-frequency generation vibrational spectra (SFG-VS) depend on the ability to measure and understand the factors affecting the SFG-VS spectral lineshape accurately and reliably. In the past, the formulation of the polarization selection rules for SFG-VS and the development of the sub-wavenumber high-resolution broadband SFG-VS (HR-BB-SFG-VS) have provided solutions for many of these needs. However, despite these advantages, HR-BB-SFG-VS has not been widely adopted. The majority of SFG measurements so far still relies on the picosecond scanning SFG-VS (ps-SFG-VS) or the conventional broadband SFG-VS (BB-SFG-VS) with the spectral resolution around (mostly above) 10 cm-1, which also results in less ideal spectral lineshape in the SFG spectra due to the temporal and chirp effects of the laser pulses used in experiment. In this report, the temporal and the chirp effects of laser pulses with different profiles in the SFG experiment on the measured SFG-VS spectral lineshape are examined through spectral simulation. In addition, the experimental data of a classical model system, i.e., OTS (octadecyltrichlorosilane) monolayer on glass, obtained from the ps-SFG-VS, the BB-SFG-VS, and the HR-BB-SFG-VS measurements, are directly compared and examined. These results show that temporal and chirp effects are often significant in the conventional BB-SFG-VS, resulting lineshape distortions and peak position shifts besides spectral broadening. Such temporal and chirp effects are less significant in the ps scanning SFG-VS. For the HR-BB-SFG-VS, spectral broadening, and temporal and chirp effects are insignificant, making HR-BB-SFG-VS the choice for accurate and reliable measurement and analysis of SFG-VS spectra.
Collapse
|
4
|
Zhu Q, Wallentine SK, Deng GH, Rebstock JA, Baker LR. The Solvation-Induced Onsager Reaction Field Rather than the Double-Layer Field Controls CO 2 Reduction on Gold. JACS AU 2022; 2:472-482. [PMID: 35252996 PMCID: PMC8889607 DOI: 10.1021/jacsau.1c00512] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Indexed: 06/14/2023]
Abstract
The selectivity and activity of the carbon dioxide reduction (CO2R) reaction are sensitive functions of the electrolyte cation. By measuring the vibrational Stark shift of in situ-generated CO on Au in the presence of alkali cations, we quantify the total electric field present at catalytic active sites and deconvolute this field into contributions from (1) the electrochemical Stern layer and (2) the Onsager (or solvation-induced) reaction field. Contrary to recent theoretical reports, the CO2R kinetics does not depend on the Stern field but instead is closely correlated with the strength of the Onsager reaction field. These results show that in the presence of adsorbed (bent) CO2, the Onsager field greatly exceeds the Stern field and is primarily responsible for CO2 activation. Additional measurements of the cation-dependent water spectra using vibrational sum frequency generation spectroscopy show that interfacial solvation strongly influences the CO2R activity. These combined results confirm that the cation-dependent interfacial water structure and its associated electric field must be explicitly considered for accurate understanding of CO2R reaction kinetics.
Collapse
|
5
|
Nguyen CV, Peng M, Duignan TT, Nguyen AV. Salting-Up of Surfactants at the Surface of Saline Water as Detected by Tensiometry and SFG and Supported by Molecular Dynamics Simulation. J Phys Chem B 2022; 126:1063-1075. [PMID: 35103476 DOI: 10.1021/acs.jpcb.1c08114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Surfactant adsorption at the air-water interface is critical to many industrial processes but its dependence on salt ions is still poorly understood. Here, we investigate the adsorption of sodium dodecanoate onto the air-water interface using model saline waters of Li+ or Cs+ at pH values 8 and 11. Both cations enhance the surfactant adsorption, as expected, but their largest effects on the adsorption also depend on pH. Specifically, surface tension measurements, sum-frequency generation spectroscopy, and microelectrophoresis show that small (hard) Li+ enhances the surfactant adsorption more than large (soft) Cs+ at pH 11. This effect is fully reversed at pH 8. We argue that this salting-up (increasing adsorption) reversal is attributable to the conversion of the neutralized carboxylic (-COOH) headgroup at pH 8 into the charged carboxylate (-COO-) headgroup at pH 11, which, respectively, interact with Cs+ and Li+ favorably. Molecular dynamics simulation shows that the affinity of Cs+ to the interface is decreased and eventually overtaken by Li+ as the carboxylic groups are deprotonated. This study highlights the importance of the charge and size of salt ions in selecting surfactants and electrolytes for industrial applications.
Collapse
Affiliation(s)
- Cuong V Nguyen
- School of Chemical Engineering and ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals (UQ Node), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mengsu Peng
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Timothy T Duignan
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Anh V Nguyen
- School of Chemical Engineering and ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals (UQ Node), The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
6
|
Ge A, Inoue KI, Ye S. Probing the electrode-solution interfaces in rechargeable batteries by sum-frequency generation spectroscopy. J Chem Phys 2020; 153:170902. [PMID: 33167651 DOI: 10.1063/5.0026283] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
An in-depth understanding of the electrode-electrolyte interaction and electrochemical reactions at the electrode-solution interfaces in rechargeable batteries is essential to develop novel electrolytes and electrode materials with high performance. In this perspective, we highlight the advantages of the interface-specific sum-frequency generation (SFG) spectroscopy on the studies of the electrode-solution interface for the Li-ion and Li-O2 batteries. The SFG studies in probing solvent adsorption structures and solid-electrolyte interphase formation for the Li-ion battery are briefly reviewed. Recent progress on the SFG study of the oxygen reaction mechanisms and stability of the electrolyte in the Li-O2 battery is also discussed. Finally, we present the current perspective and future directions in the SFG studies on the electrode-electrolyte interfaces toward providing deeper insight into the mechanisms of discharging/charging and parasitic reactions in novel rechargeable battery systems.
Collapse
Affiliation(s)
- Aimin Ge
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Ken-Ichi Inoue
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Shen Ye
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
7
|
Wallentine S, Bandaranayake S, Biswas S, Baker LR. Direct Observation of Carbon Dioxide Electroreduction on Gold: Site Blocking by the Stern Layer Controls CO 2 Adsorption Kinetics. J Phys Chem Lett 2020; 11:8307-8313. [PMID: 32946241 DOI: 10.1021/acs.jpclett.0c02628] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Directly observing active surface intermediates represents a major challenge in electrocatalysis, especially for CO2 electroreduction on Au. We use in-situ, plasmon-enhanced vibrational sum frequency generation spectroscopy, which has detection limits of <1% of a monolayer and can access the Au/electrolyte interface during active electrocatalysis in the absence of mass transport limitations. Measuring the potential-dependent surface coverage of atop CO confirms that the rate-determining step for this reaction is CO2 adsorption. An analysis of the interfacial electric field reveals the formation of a dense cation layer at the electrode surface, which is correlated to the onset of CO production. The Tafel slope increases in conjunction with the field saturation due to active site blocking by adsorbed cations. These findings show that CO2 reduction is extremely sensitive to the potential-dependent structure of the electrochemical double layer and provides direct observation of the interfacial processes that govern these kinetics.
Collapse
Affiliation(s)
- Spencer Wallentine
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Savini Bandaranayake
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Somnath Biswas
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - L Robert Baker
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
8
|
Wang W, Tan J, Ye S. Unsaturated Lipid Accelerates Formation of Oligomeric β-Sheet Structure of GP41 Fusion Peptide in Model Cell Membrane. J Phys Chem B 2020; 124:5169-5176. [PMID: 32453953 DOI: 10.1021/acs.jpcb.0c02464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Membrane fusion of the viral and host cell membranes is the initial step of virus infection and is catalyzed by fusion peptides. Although the β-sheet structure of fusion peptides has been proposed to be the most important fusion-active conformation, it is still very challenging to experimentally identify different types of β-sheet structures at the cell membrane surface in situ and in real time. In this work, we demonstrate that the interface-sensitive amide II spectral signals of protein backbones, generated by the sum frequency generation vibrational spectroscopy, provide a sensitive probe for directly capturing the formation of oligomeric β-sheet structure of fusion peptides. Using human immunodeficiency virus (HIV) glycoprotein GP41 fusing peptide (FP23) as the model, we find that formation speed of oligomeric β-sheet structure depends on lipid unsaturation. The unsaturated lipid such as POPG can accelerate formation of oligomeric β-sheet structure of FP23. The β-sheet structure is more deeply inserted into the hydrophobic region of the POPG bilayer than the α-helical segment. This work will pave the way for future researches on capturing intermediate structures during membrane fusion processes and revealing the fusion mechanism.
Collapse
Affiliation(s)
- Wenting Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Junjun Tan
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shuji Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
9
|
García Rey N, Arnolds H. Ultrafast dynamics of the dipole moment reversal in a polar organic monolayer. J Chem Phys 2019; 150:174702. [PMID: 31067873 DOI: 10.1063/1.5066551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Pyridine layers on Cu(110) possess a strong electric field due to the large dipole of adsorbed pyridine. This electric field is visible as an enhanced sum frequency response from both the copper surface electrons and the aromatic C-H stretch of pyridine via a third order susceptibility. In response to a visible pump pulse, both surface electron and C-H stretch sum frequency signals are reduced on a subpicosecond time scale. In addition, the relative phase between the two signals changes over a few hundred femtoseconds, which indicates a change in the electronic structure of the adsorbate. We explain the transients as a consequence of the previously observed pyridine dipole field reversal when the pump pulse excites electrons into the pyridine π* orbital. The pyridine anions in the pyridine layer cause a large-scale structural change which alters the pyridine-copper bond, reflected in the altered sum frequency response.
Collapse
Affiliation(s)
- Natalia García Rey
- Institute of Physical Chemistry, Westfälische Wilhelms-Universität Münster Corrensstraße 28/30, 48149 Münster, Germany
| | - Heike Arnolds
- Surface Science Research Center, Department of Chemistry, University of Liverpool, Oxford Road, Liverpool L69 3BX, United Kingdom
| |
Collapse
|
10
|
Moberg DR, Li Q, Reddy SK, Paesani F. Water structure at the interface of alcohol monolayers as determined by molecular dynamics simulations and computational vibrational sum-frequency generation spectroscopy. J Chem Phys 2019; 150:034701. [PMID: 30660151 DOI: 10.1063/1.5072754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Daniel R. Moberg
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Qin Li
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Sandeep K. Reddy
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
- Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, USA
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
11
|
Reddy SK, Thiraux R, Wellen Rudd BA, Lin L, Adel T, Joutsuka T, Geiger FM, Allen HC, Morita A, Paesani F. Bulk Contributions Modulate the Sum-Frequency Generation Spectra of Water on Model Sea-Spray Aerosols. Chem 2018. [DOI: 10.1016/j.chempr.2018.04.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
Joutsuka T, Hirano T, Sprik M, Morita A. Effects of third-order susceptibility in sum frequency generation spectra: a molecular dynamics study in liquid water. Phys Chem Chem Phys 2018; 20:3040-3053. [PMID: 28607983 DOI: 10.1039/c7cp01978e] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
When sum frequency generation (SFG) spectroscopy is applied to charged solid/liquid interfaces, the observed SFG signals include both the second-order and third-order polarizations. The latter is called the χ(3) effect, which mainly includes induced molecular orientation by electric fields at charged interfaces. We theoretically evaluate the χ(3) effect on the SFG spectroscopy of liquid water using molecular dynamics (MD) simulations. The MD simulations enable us to definitely calculate the χ(3) susceptibility as a bulk property, and thereby separating it from the usual χ(2) effect shown in the SFG spectra. The calculated results of χ(3) for liquid water are fairly consistent with the experimental estimates. The present finding is utilized to analyze the spectral change of SFG at the air/water interface under electric fields and at the charged silica/water interface. The present analysis of the spectral changes allows for distinguishing the intrinsic change of the interface structure and the χ(3) effect from bulk liquid.
Collapse
Affiliation(s)
- Tatsuya Joutsuka
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.
| | | | | | | |
Collapse
|
13
|
Rey NG, Dlott DD. Studies of electrochemical interfaces by broadband sum frequency generation. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2016.12.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Pranzetti A, Davis M, Yeung CL, Preece JA, Koelsch P, Mendes PM. Direct Observation of Reversible Biomolecule Switching Controlled By Electrical Stimulus. ADVANCED MATERIALS INTERFACES 2014; 1:1-4. [PMID: 25810954 PMCID: PMC4368128 DOI: 10.1002/admi.201400026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/14/2014] [Indexed: 06/04/2023]
Affiliation(s)
- Alice Pranzetti
- School of Chemical Engineering, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK
| | - Matthew Davis
- National ESCA and Surface Analysis Center for Biomedical Problems, Department of Bioengineering, University of Washington P.O. Box 351653, Seattle, Washington, 98195-1653, USA
| | - Chun L Yeung
- School of Chemical Engineering, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK
| | - Jon A Preece
- School of Chemistry, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK
| | - Patrick Koelsch
- National ESCA and Surface Analysis Center for Biomedical Problems, Department of Bioengineering, University of Washington P.O. Box 351653, Seattle, Washington, 98195-1653, USA
| | - Paula M Mendes
- School of Chemical Engineering, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
15
|
Kemnade N, Chen Y, Muglali MI, Erbe A. Electrochemical reductive desorption of alkyl self-assembled monolayers studied in situ by spectroscopic ellipsometry: evidence for formation of a low refractive index region after desorption. Phys Chem Chem Phys 2014; 16:17081-90. [DOI: 10.1039/c4cp01369g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Aggregates formed after reductive desorption of self-assembled monolayers of shorter chained thiols from gold may stabilise hydrogen bubbles.
Collapse
Affiliation(s)
- Nina Kemnade
- Max-Planck-Institut für Eisenforschung GmbH
- 40237 Düsseldorf, Germany
| | - Ying Chen
- Max-Planck-Institut für Eisenforschung GmbH
- 40237 Düsseldorf, Germany
| | - Mutlu I. Muglali
- Max-Planck-Institut für Eisenforschung GmbH
- 40237 Düsseldorf, Germany
| | - Andreas Erbe
- Max-Planck-Institut für Eisenforschung GmbH
- 40237 Düsseldorf, Germany
| |
Collapse
|
16
|
Muglali MI, Erbe A, Chen Y, Barth C, Koelsch P, Rohwerder M. Modulation of electrochemical hydrogen evolution rate by araliphatic thiol monolayers on gold. Electrochim Acta 2013; 90. [PMID: 24235778 DOI: 10.1016/j.electacta.2012.11.116] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electroreductive desorption of a highly ordered self-assembled monolayer (SAM) formed by the araliphatic thiol (4-(4-(4-pyridyl)phenyl)phenyl)methanethiol leads to a concurrent rapid hydrogen evolution reaction (HER). The desorption process and resulting interfacial structure were investigated by voltammetric techniques, in situ spectroscopic ellipsometry, and in situ vibrational sum-frequency-generation (SFG) spectroscopy. Voltammetric experiments on SAM-modified electrodes exhibit extraordinarily high peak currents, which di er between Au(111) and polycrystalline Au substrates. Association of reductive desorption with HER is shown to be the origin of the observed excess cathodic charges. The studied SAM preserves its two-dimensional order near Au surface throughout a fast voltammetric scan even when the vertex potential is set several hundred millivolt beyond the desorption potential. A model is developed for the explanation of the observed rapid HER involving ordering and pre-orientation of water present in the nanometer-sized reaction volume between desorbed SAM and the Au electrode, by the structurally extremely stable monolayer, leading to the observed catalysis of the HER.
Collapse
Affiliation(s)
- Mutlu I Muglali
- Max-Planck-Institut für Eisenforschung GmbH, Department of Interface Chemistry and Surface Engineering, Max-Planck-Str. 1, 40237 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|