Ultrahigh-Q optomechanical crystal cavities fabricated in a CMOS foundry.
Sci Rep 2017;
7:2491. [PMID:
28559585 PMCID:
PMC5449385 DOI:
10.1038/s41598-017-02515-4]
[Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/12/2017] [Indexed: 11/18/2022] Open
Abstract
Photonic crystals use periodic structures to create frequency regions where the optical wave propagation is forbidden, which allows the creation and integration of complex optical functionalities in small footprint devices. Such strategy has also been successfully applied to confine mechanical waves and to explore their interaction with light in the so-called optomechanical cavities. Because of their challenging design, these cavities are traditionally fabricated using dedicated high-resolution electron-beam lithography tools that are inherently slow, limiting this solution to small-scale or research applications. Here we show how to overcome this problem by using a deep-UV photolithography process to fabricate optomechanical crystals in a commercial CMOS foundry. We show that a careful design of the photonic crystals can withstand the limitations of the photolithography process, producing cavities with measured intrinsic optical quality factors as high as Qi = (1.21 ± 0.02) × 106. Optomechanical crystals are also created using phononic crystals to tightly confine the GHz sound waves within the optical cavity, resulting in a measured vacuum optomechanical coupling rate of g0 = 2π × (91 ± 4) kHz. Efficient sideband cooling and amplification are also demonstrated since these cavities are in the resolved sideband regime. Further improvements in the design and fabrication process suggest that commercial foundry-based optomechanical cavities could be used for quantum ground-state cooling.
Collapse