1
|
Sasso CP, Mana G, Massa E. Operation model of a skew-symmetric split-crystal neutron interferometer. J Appl Crystallogr 2024; 57:44-59. [PMID: 38322716 PMCID: PMC10840307 DOI: 10.1107/s1600576723010245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/28/2023] [Indexed: 02/08/2024] Open
Abstract
The observation of neutron interference using a triple Laue interferometer formed by two separate crystals opens the way to the construction and operation of skew-symmetric interferometers with extended arm separation and length. The specifications necessary for their successful operation are investigated here: most importantly, how the manufacturing tolerance and crystal alignments impact the interference visibility. In contrast with previous studies, both incoherent sources and the three-dimensional operation of the interferometer are considered. It is found that, with a Gaussian Schell model of an incoherent source, the integrated density of the particles leaving the interferometer is the same as that yielded by a coherent Gaussian source having a radius equal to the coherence length.
Collapse
Affiliation(s)
- Carlo P. Sasso
- INRIM – Istituto Nazionale di Ricerca Metrologica, Strada delle cacce 91, 10135 Torino, Italy
| | - Giovanni Mana
- INRIM – Istituto Nazionale di Ricerca Metrologica, Strada delle cacce 91, 10135 Torino, Italy
- Dipartimento di Fisica, UNITO – Università di Torino, via Pietro Giuria 1, 10125 Torino, Italy
| | - Enrico Massa
- INRIM – Istituto Nazionale di Ricerca Metrologica, Strada delle cacce 91, 10135 Torino, Italy
| |
Collapse
|
2
|
Lemmel H, Jentschel M, Abele H, Lafont F, Guerard B, Sasso CP, Mana G, Massa E. Neutron interference from a split-crystal interferometer. J Appl Crystallogr 2022; 55:870-875. [PMID: 35974723 PMCID: PMC9348866 DOI: 10.1107/s1600576722006082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022] Open
Abstract
The first successful operation of a neutron interferometer with a separate beam-recombining crystal is reported. This result was achieved at the neutron interferometry setup S18 at the ILL in Grenoble by a collaboration between TU Wien, ILL, Grenoble, and INRIM, Torino. While previous interferometers have been machined out of a single-crystal block, in this work two crystals were successfully aligned on nanoradian and picometre scales, as required to obtain neutron interference. As a decisive proof-of-principle demonstration, this opens the door to a new generation of neutron interferometers and exciting applications.
Collapse
Affiliation(s)
- H. Lemmel
- ATI – Atominstitut, TU Wien, Wien, Austria
| | | | - H. Abele
- ATI – Atominstitut, TU Wien, Wien, Austria
| | - F. Lafont
- ILL – Institut Laue–Langevin, Grenoble, France
| | - B. Guerard
- ILL – Institut Laue–Langevin, Grenoble, France
| | - C. P. Sasso
- INRIM – Istituto Nazionale di Ricerca Metrologica, Torino, Italy
| | - G. Mana
- INRIM – Istituto Nazionale di Ricerca Metrologica, Torino, Italy
| | - E. Massa
- INRIM – Istituto Nazionale di Ricerca Metrologica, Torino, Italy
| |
Collapse
|
3
|
Sasso CP, Mana G, Massa E. Defocused travelling fringes in a scanning triple-Laue X-ray interferometry setup. J Appl Crystallogr 2021; 54:1403-1408. [PMID: 34667449 PMCID: PMC8493625 DOI: 10.1107/s1600576721007962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022] Open
Abstract
This paper investigates both analytically and experimentally the effect of the defocus (the difference between the splitter-to-mirror and analyser-to-mirror distances) on the phase of the travelling fringes in a separate-crystal triple-Laue X-ray interferometer. The measurement of the silicon lattice parameter by a separate-crystal triple-Laue X-ray interferometer is a key step for the realization of the kilogram by counting atoms. Since the measurement accuracy is approaching nine significant digits, a reliable model of the interferometer operation is required to quantify or exclude systematic errors. This paper investigates both analytically and experimentally the effect of the defocus (the difference between the splitter-to-mirror and analyser-to-mirror distances) on the phase of the interference fringes and the measurement of the lattice parameter.
Collapse
Affiliation(s)
- C P Sasso
- INRIM - Istituto Nazionale di Ricerca Metrologica, strada delle cacce 91, 10135 Torino, Italy
| | - G Mana
- INRIM - Istituto Nazionale di Ricerca Metrologica, strada delle cacce 91, 10135 Torino, Italy.,UNITO - Università di Torino, Dipartimento di Fisica, via Pietro Giuria 1, 10125 Torino, Italy
| | - E Massa
- INRIM - Istituto Nazionale di Ricerca Metrologica, strada delle cacce 91, 10135 Torino, Italy
| |
Collapse
|
5
|
Tiesinga E, Mohr PJ, Newell DB, Taylor BN. CODATA recommended values of the fundamental physical constants: 2018. REVIEWS OF MODERN PHYSICS 2021; 93:025010. [PMID: 36733295 PMCID: PMC9890581 DOI: 10.1103/revmodphys.93.025010] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We report the 2018 self-consistent values of constants and conversion factors of physics and chemistry recommended by the Committee on Data of the International Science Council (CODATA). The recommended values can also be found at physics.nist.gov/constants. The values are based on a least-squares adjustment that takes into account all theoretical and experimental data available through 31 December 2018. A discussion of the major improvements as well as inconsistencies within the data is given. The former include a decrease in the uncertainty of the dimensionless fine-structure constant and a nearly two orders of magnitude improvement of particle masses expressed in units of kg due to the transition to the revised International System of Units (SI) with an exact value for the Planck constant. Further, because the elementary charge, Boltzmann constant, and Avogadro constant also have exact values in the revised SI, many other constants are either exact or have significantly reduced uncertainties. Inconsistencies remain for the gravitational constant and the muon magnetic-moment anomaly. The proton charge radius puzzle has been partially resolved by improved measurements of hydrogen energy levels.
Collapse
Affiliation(s)
- Eite Tiesinga
- Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, College Park, Maryland 20742, USA
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Peter J. Mohr
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - David B. Newell
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Barry N. Taylor
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
7
|
Leutenegger MA, Kühn S, Micke P, Steinbrügge R, Stierhof J, Shah C, Hell N, Bissinger M, Hirsch M, Ballhausen R, Lang M, Gräfe C, Wipf S, Cumbee R, Betancourt-Martinez GL, Park S, Yerokhin VA, Surzhykov A, Stolte WC, Niskanen J, Chung M, Porter FS, Stöhlker T, Pfeifer T, Wilms J, Brown GV, Crespo López-Urrutia JR, Bernitt S. High-Precision Determination of Oxygen K_{α} Transition Energy Excludes Incongruent Motion of Interstellar Oxygen. PHYSICAL REVIEW LETTERS 2020; 125:243001. [PMID: 33412031 DOI: 10.1103/physrevlett.125.243001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/19/2020] [Accepted: 10/30/2020] [Indexed: 06/12/2023]
Abstract
We demonstrate a widely applicable technique to absolutely calibrate the energy scale of x-ray spectra with experimentally well-known and accurately calculable transitions of highly charged ions, allowing us to measure the K-shell Rydberg spectrum of molecular O_{2} with 8 meV uncertainty. We reveal a systematic ∼450 meV shift from previous literature values, and settle an extraordinary discrepancy between astrophysical and laboratory measurements of neutral atomic oxygen, the latter being calibrated against the aforementioned O_{2} literature values. Because of the widespread use of such, now deprecated, references, our method impacts on many branches of x-ray absorption spectroscopy. Moreover, it potentially reduces absolute uncertainties there to below the meV level.
Collapse
Affiliation(s)
- M A Leutenegger
- NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, Maryland 20771, USA
| | - S Kühn
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - P Micke
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| | - R Steinbrügge
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - J Stierhof
- Remeis-Sternwarte and Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Sternwartstrasse 7, 96049 Bamberg, Germany
| | - C Shah
- NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, Maryland 20771, USA
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - N Hell
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
| | - M Bissinger
- Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Strasse 1, 91058 Erlangen, Germany
| | - M Hirsch
- Remeis-Sternwarte and Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Sternwartstrasse 7, 96049 Bamberg, Germany
| | - R Ballhausen
- Remeis-Sternwarte and Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Sternwartstrasse 7, 96049 Bamberg, Germany
| | - M Lang
- Remeis-Sternwarte and Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Sternwartstrasse 7, 96049 Bamberg, Germany
| | - C Gräfe
- Remeis-Sternwarte and Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Sternwartstrasse 7, 96049 Bamberg, Germany
| | - S Wipf
- Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | - R Cumbee
- NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, Maryland 20771, USA
- Department of Astronomy, University of Maryland, College Park, Maryland 20742, USA
| | - G L Betancourt-Martinez
- Institut de Recherche en Astrophysique et Planétologie, 9, avenue du Colonel Roche BP 44346, 31028 Toulouse Cedex 4, France
| | - S Park
- Ulsan National Institute of Science and Technology, 50 UNIST-gil, 44919 Ulsan, Republic of Korea
| | - V A Yerokhin
- Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - A Surzhykov
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
- Institut für Mathematische Physik, Technische Universität Braunschweig, D-38106 Braunschweig, Germany
| | - W C Stolte
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - J Niskanen
- Institute for Methods and Instrumentation in Synchrotron Radiation Research G-ISRR, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
- Department of Physics and Astronomy, University of Turku, FI-20014 Turun Yliopisto, Finland
| | - M Chung
- Ulsan National Institute of Science and Technology, 50 UNIST-gil, 44919 Ulsan, Republic of Korea
| | - F S Porter
- NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, Maryland 20771, USA
| | - T Stöhlker
- Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany
- Helmholtz-Institut Jena, Fröbelstieg 3, 07743 Jena, Germany
| | - T Pfeifer
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - J Wilms
- Remeis-Sternwarte and Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Sternwartstrasse 7, 96049 Bamberg, Germany
| | - G V Brown
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
| | | | - S Bernitt
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
- Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany
- Helmholtz-Institut Jena, Fröbelstieg 3, 07743 Jena, Germany
| |
Collapse
|
8
|
Liu S, Shou Y, Zhou X, Cheng W, Luo Z. Lattice-dependent spin Hall effect of light in a Weyl semimetal. OPTICS EXPRESS 2020; 28:10783-10793. [PMID: 32403602 DOI: 10.1364/oe.388042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/05/2020] [Indexed: 06/11/2023]
Abstract
We systematically study the lattice-dependent spin Hall effect of light (SHEL) in a Weyl semimetal (WSM) by considering left-handed polarization of the incident beam, and propose a new simple method to sense the lattice spacing precisely. It is revealed that the lattice spacing plays as essential a role as the Weyl points separation in the influences on the SHEL, and the variations of SHEL shifts are closely related to the real part of Hall conductivity. Specifically, the SHEL shifts increase to the peak values first and then decrease gradually with the increase of lattice spacing, and a quantitative relationship between the SHEL and the lattice spacing is established. By simulating weak measurement experiments, the lattice-dependent SHEL shifts are amplified and measured in desirable accuracies. Subsequently, we propose a method of precisely sensing the lattice spacing based on the amplified SHEL shifts. These researches provide theoretical basis for manipulating the SHEL in WSMs, and may open the possibility of fabricating the WSM parameter sensors.
Collapse
|